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1.Problem background

Preparation Filtering Main research queStion

Is a Genetic Algorithm suited to find
satisfactory solutions to the given
Flexible Job Shop Problem (FJSP)

instances in a reasonable amount of

time compared to the provided (Mixed
Integer Linear Programming) MILP
implementation?

Orders Reception

Enzyme 1:
Preparation -> Filtering -> Reception
Deadline: 10

Enzyme 2:
Filtering -> Reception
Deadline: 26

This can be modelled as a Flexible Job Shop Problem!
How do we assign the operations to the available machines?

3. Results

The performance of the algorithms is measured on the 13 available problem instances. The instances
increase in complexity.

2. Methodology
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instances. If given enough time and computing
power a MILP implementation will usually reach a
solution close the optimal. However, when it

Selection Operators
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Minimum makespan

Single objective GA Multi-objective GA - comes to practical applications, usually a
R so/ectionisused. Tournament selection is used. w ¥ solution which is good enough and is found in a
» Rankindividuals a-c.cordlng to makespan.  Draw ten individuals from the population at ool /,./: reasonable amount of time is sufficient. The two
e Construct probability vector. random. ,/': presented genetic algorithms showcase that in
 Draw random individual from the population « Chose one with the best fitness to be a parent. g e e — X )
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the population size are chosen. « Split parents into pairs and apply crossover.
* Split parents into pairs and apply crossover. After the children are generated, non-dominated _ ' : :
To determine which individuals are chosen for the  sorting is applied to a joint population of the elites, Strengths of Genetic Algorithm approach: Weak.ne.sses ?f Gen(?tlc Algorithm approach:
next generation, the elites, non-elites and children  non-elites and children. As with the single objective * Produce multiple feasible solutions. * Difficulty in setting parameters.

are ranked based on their makespan. The top case, the top Ipopulation_sizel schedules are chosen * Incorporate multiple objective functions. * Rarely reaches the optimal solutions.
Ipopulation_sizel schedules are chosen for the next  for the next generation. e Reach good solutions faster than MILP e Premature convergence.
generation. implementation for larger instances. e Randomness in results.

Note on non-dominated sorting

Domination condition Two objectives are used: makespan and lateness.
Makespan is the latest operation completion.

Wi 3 OA > OB Lateness is the total delay after the deadline across all job

1 = Y Jobs.
Schedules in the population are split into frontiers. The optimal
frontier contains the schedules which are not dominated by
any other schedule. All other frontiers contain contain
chedules which are dominated only by those in previous
tiers. The algorithm by which this ranking is performed is

5. Future work

e Test the algorithms on problem instances which are used as benchmarks in

e Use problem specific traits as objectives. The unique part about the D
of cleaning times. A possible objective function is the minimisatic
maximum machine cleaning time.

e Test the multi-objective approach on more than two objecti
might be conflicting with one another. This would really ad

nted in[5]and its runtime is O(mn”2). . for more practical applications, where flexibility is neec
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