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Optimal Decision Trees for the Algorithm Selection Problem

Balancing Performance and Interpretability

- The Algorithm Selection Problem (ASP) is a challenge in computer science

aimed at predicting the most effective algorithm for a given instance of a Data Preprocessing Model training & selection Benchmarking
computationally difficult problem. These problems occur frequently across Training and selection of

various industries, such as finance, healthcare and energy [11.
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interpretable [2].

- The relation between the performance and interpretability is usually depicted
in the literature as shown in figure 1, which shows interpretability as inversely
proportional to performance, while this may not be true.
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4 Experiments & Conclusions

shallow trees which are optimal based on a specified objective function and
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