Concurrency with efflects and handlers

Background: Effects & Hand

Algebraic effect and handlers separate effect
descriptions from implementations, enhancing pro-
gram modularity. Poulsen’s approach |2| provides
a basis for effect implementation. The images
illustrate the free monad |3|, state effect implemen-
tation, and a multi-effect example program.

data State s k incerr’' = do
= Put s k 5 <- get’
| Get (s -> k) put' (s + 1)
deriving Functor | err' "foo"

data Free T &
= Pure 3
| Op (T (Free T a))

Research task

My research task is to implement concurrency and
nondeterminism using algebraic effects and han-
dlers, such that they respect the laws given in "Mod-
elling and analysis of communicating system" [1].

e Implement a representation for concurrency
using new eflfects or combining existing ones.

Implement a handler that will handle the non-
determinism inherent to concurrency.

Prove the laws concerning concurrency from
the book 'Modelling and Analysis of Commu-
nicating Systems’ [1].

Compare this implementation to existing lit-
erature and explore the possible combinations
with other existing effects.

Show some examples of useful programs using
this implementation.

Methodology

The implementation extends code from Poulsen’s
blog post |2]|, using Haskell to create effects and
handlers. Equational reasoning was used for law
proofs, written in text files. The implementation
and proofs are available in the project repository.

Bibliography
References

Concurrency

Interleaving concurrency is a model of concurrent
execution where multiple tasks or processes are ex-
ecuted by alternating between them, giving the ap-
pearance of simultaneous execution. How can we
simulate concurrency by interleaving two programs
represented by free monads? Since the free monad
uses continuation-passing style, the answer to this
question is very straightforward, as illustrated in
the following figure.

a=0pf(Opi(Purex))
b =0p g (Op h (Purey))
parab=0p f(Op g (Oph (Opi(Pure(x,Y)))))

r and y are the values returned by a and b. par a
b is an interleaving of the effects of a and b, and
returns the tuple (z,y).

Implementation

Arthur Jacques, Supervisors: Casper Poulsen, Jaro Reinders

Nondeterminism

data Choose k .
- Choose (Bool -> k) The Choose effect implements

| Zero nondeterminism through a
deriving Functor function taking a boolean as
a parameter. -+ uses that ef-
fect to implement the plus op-
erator, which represents a di-
vision into two subprograms.

(~+~) :: Choose <: T

=> Free T a -> Free T 3
-> Free T 3

ml ~+~ m2 = do
b <- choose
1T b then ml else m2

Nondeterminism 1n concurenc

Concurrency comes with
some Iinherent nondetermin-
ism, coming from the order of
interleaving of the actions of
the program. This figure [1],
shows that nondeterminism.

-- function for running two programs concurrently (|])

yar .. Choose < T => Free T 3 -> Free T b -> Free T (3, b)
jar (Pure x) y = fmap (x,) vy

)ar x (Pure y) = fmap (,y) X

)ar x y = do

goesFirst x y ~+~ fmap swap (goesFirst y x)

-- function for running two programs concurrently, with the first one having priority

The function par works by using the Choose effect to non-deterministically decide which of the two programs
to prioritize. This prioritization, which is the same as the leftmerge operation from the concurrency laws, is
encapsulated in the function goesFirst, which calls par recursively with the continuation of the prioritized

program and the entirety of the other one.

goesFirst
goesFirst (Pure x) yv = fmap (x,) v
goesFirst (Op x) v = Op (fmap (par vy) x)

Choose <: T => Free T 3 -> Free T b -> Free T (a3, b)

Ll] Jan Friso Groote and Mohammad Reza Mousavi. Modelling and Analysis of Communicating Systems. MIT Press, Cambridge, MA, USA, 2014.

12| Casper B. Poulsen. Algebraic effects in practice: Theory and implementation, 2023. Accessed: 2024-05-14.

3] Wouter Swierstra. Data types a la carte. Journal of Functional Programming, 18(4), July 2008.

%
TU Delft

Laws for Concurrency

M zl|ly=z|y+yllz+zly

LMli alz=az

LM2i é6|lx=4¢

LM3i azl|y=oa(z|y)

LM4 (z+y)lz=z|z+y]| 2

LM5 (Q_4pX(d) [y =2_a.pX(d) |y

S1 x|y = ylx

S2 (z|y)|z = z|(y|2)
S3 T =2

S4 ald =9

S5 (a-x)|f = a|B-x

S6 (@z)|(B-y) = a|f-(z || y)

S7 (x +y)|z =z|z + y|z

S8 (2_a:0 X(@d)|y = 2_4.0 X(d)y

TC1 (z|ly)llz==z[(y] 2)
TC2 zl|éd==x4¢

TC3 (zly) | 2z =z|(y | 2)

This figure lists all the concurrency laws, and is
taken from "Modelling and Analysis of communi-
cating systems" |1|. We were able to prove that they
hold for our interface, except for the ones concern-
ing simultaneity, which is a possible future direction
for this intertace.

Application: ABP Model

/1{

o

The ABP model ensures reliable data transmission
from sender (S) to receiver (R) over lossy channels.
We implemented this model using our interface. We
then proved its correctness as well as the validity
of the model using equational reasoning. We also
used handlers to execute the program whichever
way we wanted, illustrating the versatility of effects
and handlers.

