
Concurrencywitheffectsandhandlers
Arthur Jacques, Supervisors: Casper Poulsen, Jaro Reinders

Background: Effects & Handlers
Algebraic effect and handlers separate effect
descriptions from implementations, enhancing pro-
gram modularity. Poulsen’s approach [2] provides
a basis for effect implementation. The images
illustrate the free monad [3], state effect implemen-
tation, and a multi-effect example program.

Nondeterminism

The Choose effect implements
nondeterminism through a
function taking a boolean as
a parameter. + uses that ef-
fect to implement the plus op-
erator, which represents a di-
vision into two subprograms.

Concurrency
Interleaving concurrency is a model of concurrent
execution where multiple tasks or processes are ex-
ecuted by alternating between them, giving the ap-
pearance of simultaneous execution. How can we
simulate concurrency by interleaving two programs
represented by free monads? Since the free monad
uses continuation-passing style, the answer to this
question is very straightforward, as illustrated in
the following figure.

x and y are the values returned by a and b. par a
b is an interleaving of the effects of a and b, and
returns the tuple (x,y).

Nondeterminism in concurency

!

a c

b c a d

c b d a

d b

a|c

b|c a|d

b|d

Figure 4.3: The behaviour of a·b ∥ c·d

these are two different operators, we use them interchangeably as their meaning in both cases is the same.
More concretely, a|b both represents a multiaction and a synchronisation of two processes both consisting
of a single action.

The process p ≪ q (pronounce p before q) describes the part of process p that can happen before q is
forced to perform an action.

The first axiom marked M in table 4.12 characterises our view on parallelism. The first action in x ∥ y
can either come from x, come from y or is an action that happens simultaneously in both of them. In axiom
LM1 it is expressed that multi-action α must happen before the process x must do an action. Consider the
process a ! b↪2. Then the a action must happen before the b action, and hence it must happen before time
2.

Consider the following process a·b ∥ c·d. Using the axioms it can be rewritten to an expression in
which the parallel operator does not occur anymore. This is called expansion. We get:

a·b ∥ c·d =
a ! (b ∥ c·d) + c ! (a·b ∥ d) + a·b|c·d =
a·(b ! c·d + c·d ! b + b|c·d) + c·(a·b ! d + d ! a·b + a·b|d) + (a|c)·(b ∥ d) =
a·(b·c·d+c·(b ∥ d)+(b|c)·d) + c·(a·(b ∥ d)+d·a·b+(a|d)·b) + (a|c)·(b ! d+d ! b+b|d) =
a·(b·c·d+c·(b·d+d·b+b|d)+(b|c)·d) + c·(a·(b·d+d·b+b|d)+d·a·b+(a|d)·b) + (a|c)·(b·d+d·b+b|d)

In this expansion quite a number of axioms have been applied each time. We have not even made appli-
cations of the before operator visible. Expansion is a very time consuming activity that shows how many
options there are possible when parallel behaviour is involved. Later on, we treat ways to get rid of the
parallel operator, without getting entangled in parallel expansion. Although not evident from the expansion
above, parallel processes have a very typical structure, which becomes clear if the behaviour is plotted in a
labelled transition system (see figure 4.3).

The synchronisation operator binds stronger than all other binary operators. The parallel composition
and left merge bind stronger than the sum operator but weaker than the conditional operator: |, ↪, ·, {≫,≪},
→, {∥, !},∑, +.

Exercise 4.4.1. Expand the process a·b ∥ c. Indicate precisely which axioms have been used.

Exercise 4.4.2. Expand the process a↪1·b↪3 ∥ c↪2.

Exercise 4.4.3. Prove that the parallel operator is both commutative and associative, i.e. x ∥ y = y ∥ x and
x ∥ (y ∥ z) = (x ∥ y) ∥ z.

Exercise 4.4.4. Prove that x≪ (c→ y) = c→ (x≪ y).

57

Concurrency comes with
some inherent nondetermin-
ism, coming from the order of
interleaving of the actions of
the program. This figure [1],
shows that nondeterminism.

Research task
My research task is to implement concurrency and
nondeterminism using algebraic effects and han-
dlers, such that they respect the laws given in "Mod-
elling and analysis of communicating system" [1].

• Implement a representation for concurrency
using new effects or combining existing ones.

• Implement a handler that will handle the non-
determinism inherent to concurrency.

• Prove the laws concerning concurrency from
the book ’Modelling and Analysis of Commu-
nicating Systems’ [1].

• Compare this implementation to existing lit-
erature and explore the possible combinations
with other existing effects.

• Show some examples of useful programs using
this implementation.

Methodology

The implementation extends code from Poulsen’s
blog post [2], using Haskell to create effects and
handlers. Equational reasoning was used for law
proofs, written in text files. The implementation
and proofs are available in the project repository.

Laws for Concurrency

This figure lists all the concurrency laws, and is
taken from "Modelling and Analysis of communi-
cating systems" [1]. We were able to prove that they
hold for our interface, except for the ones concern-
ing simultaneity, which is a possible future direction
for this interface.

Implementation

The function par works by using the Choose effect to non-deterministically decide which of the two programs
to prioritize. This prioritization, which is the same as the leftmerge operation from the concurrency laws, is
encapsulated in the function goesFirst, which calls par recursively with the continuation of the prioritized
program and the entirety of the other one.

Application: ABP Model

The ABP model ensures reliable data transmission
from sender (S) to receiver (R) over lossy channels.
We implemented this model using our interface. We
then proved its correctness as well as the validity
of the model using equational reasoning. We also
used handlers to execute the program whichever
way we wanted, illustrating the versatility of effects
and handlers.

Bibliography
References
[1] Jan Friso Groote and Mohammad Reza Mousavi. Modelling and Analysis of Communicating Systems. MIT Press, Cambridge, MA, USA, 2014.

[2] Casper B. Poulsen. Algebraic effects in practice: Theory and implementation, 2023. Accessed: 2024-05-14.

[3] Wouter Swierstra. Data types à la carte. Journal of Functional Programming, 18(4), July 2008.

