REFERENCES:
[1] ROUVOET, A., VAN ANTWERPEN, H., BACH POULSEN, C., KREBBERS, R., & VISSER, E. (2020). KNOWING

WHEN TO ASK: SOUND SCHEDULING OF NAME RESOLUTION IN TYPE CHECKERS DERIVED FROM
s c 0 P E G RA P H - B As E D ' NTRO D U cTI 0 N DECLARATIVE SPECIFICATIONS. PROCEEDINGS OF THE ACM ON PROGRAMMING LANGUAGES,
4(OOPSLA), 1-28.
[2] HENDRIK VAN ANTWERPEN, CASPER BACH POULSEN, ARJEN ROUVOET, AND EELCO VISSER. SCOPES
AS TYPES. PROC. ACM PROGRAM. LANG., 2(O0OPSLA), OCT 2018.
I YP E c H E c Kl N G Fo R A Type checking ensures data type consistency, early error _ f
detection, while facing the inherent challenge of name

SCALA SUBSET OBJECTIVES

i) Develop a type checker that addresses precedence, name resolution
complexities, and the challenge of monotonicity. We aim to combine

RQ: Can we use a Haskell library for phased scope graph

construction to type check a targeted Scala subset?

Scope graphs offer a promising approach to handle
intricate name resolution rules in type checkers, providing
a uniform and language-independent model.

automated scheduling convenience with the flexibility of the Haskell library.

ADDRESSED CHALLENGES:

e Monotonicity ensures scope graph query stability by
prohibiting the addition of critical edges, which are

Radu Mihalachiuta outgoing edges with the same label as a previously
queried path [1].

ii) Explore the number of phases required for the type checker and
investigate the impact of explicit phasing on our implementation.

r.g.mihalachiuta@student.tudelft.nl

iii) Qualitatively analyze and compare the declarativity and feature
extensibility of our type checker against the mini-Statix approach by
Rouvoet et al. [1].

 We address the challenge of precedence order on

Responsible Professor: Supervisors: different resolution paths in Scala, specifically
Casper Bach Poulsen Aron Zwaan & Thomas Durieux concerning objects and imports.

object O {
def f: Int
import N.
def g: Int

RESULTS PHASED TYPE CHECKER

+ high level of reliability and precision; The type checker is powered by a core algorithm consisting of four phases,

« lack of support for sequenced imports and nested which are exemplified through the program on the right.
wildcard shadowing;

}

100 99

1) REGISTER OBJECTS

N @ zko@oao @ 1
oo

2) DECLARE VARIABLES

N @ 2 ro@oao @ 1
h: Int i " f: Int
Solo

V

g - Int Code example of mutually recursive definitions
with imports, in circular dependencies.

Total Tests
U True Positives

object N {
import O.f
def h: Int

1 True Negatives
T False Positives
I 1 False Negatives

0

3) RESOLVE IMPORTS 4) TYPE-CHECK THE PROGRAN

CONCLUSION a o kol odoal N@z-o®o-0@1

The promising, quantitative results are comparable to others from

literature [1], [2]. Our approach is less declarative than mini-Statix, h: Int L i i /J f: Int h: Int L /.l f: Int
yet compensates through extensibility and modularity. V@WI—@V

E| v E
FUTURE WORK: f- Int r o : Int f: Int r \.‘ g . Int

A

I

1) Addressing the unsupported test cases to achieve full coverage, JI_ _ _ _f _ N
improving accuracy and the usability of the type checker. I 1 h, g
2) Incorporating additional features into the targeted Scala subset, - -
thereby enhancing its extensibility.

3) Implementing similar type checkers for other languages.

|
I
—




