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I YP E c H E c Kl N G Fo R A Type checking ensures data type consistency, early error _ f
detection, while facing the inherent challenge of name

SCALA SUBSET OBJECTIVES

i) Develop a type checker that addresses precedence, name resolution
complexities, and the challenge of monotonicity. We aim to combine

RQ: Can we use a Haskell library for phased scope graph

construction to type check a targeted Scala subset?

Scope graphs offer a promising approach to handle
intricate name resolution rules in type checkers, providing
a uniform and language-independent model.

automated scheduling convenience with the flexibility of the Haskell library.

ADDRESSED CHALLENGES:

e Monotonicity ensures scope graph query stability by
prohibiting the addition of critical edges, which are

Radu Mihalachiuta outgoing edges with the same label as a previously
queried path [1].

ii) Explore the number of phases required for the type checker and
investigate the impact of explicit phasing on our implementation.
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iii) Qualitatively analyze and compare the declarativity and feature
extensibility of our type checker against the mini-Statix approach by
Rouvoet et al. [1].

 We address the challenge of precedence order on

Responsible Professor: Supervisors: different resolution paths in Scala, specifically
Casper Bach Poulsen Aron Zwaan & Thomas Durieux concerning objects and imports.

object O {
def f: Int
import N.
def g: Int

RESULTS PHASED TYPE CHECKER

+ high level of reliability and precision; The type checker is powered by a core algorithm consisting of four phases,

« lack of support for sequenced imports and nested which are exemplified through the program on the right.
wildcard shadowing;

}
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1) REGISTER OBJECTS

N @ zko@oao @ 1
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2) DECLARE VARIABLES

N @ 2 ro@oao @ 1
h: Int i " f: Int
Solo
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g - Int Code example of mutually recursive definitions
with imports, in circular dependencies.

Total Tests
U True Positives

object N {
import O.f
def h: Int

1 True Negatives
T False Positives
I 1 False Negatives
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3) RESOLVE IMPORTS 4) TYPE-CHECK THE PROGRAN

CONCLUSION a o kol odoal N@z-o®o-0@1

The promising, quantitative results are comparable to others from

literature [1], [2]. Our approach is less declarative than mini-Statix, h: Int L i i /J f: Int h: Int L /.l f: Int
yet compensates through extensibility and modularity. V@WI—@V
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1) Addressing the unsupported test cases to achieve full coverage, JI_ _ _ _f _ N
improving accuracy and the usability of the type checker. I 1 h, g
2) Incorporating additional features into the targeted Scala subset, - -
thereby enhancing its extensibility.

3) Implementing similar type checkers for other languages.
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