

SCOPE GRAPH-BASED
TYPE CHECKING FOR A

SCALA SUBSET

1 INTRODUCTION

PHASED TYPE CHECKER

OBJECTIVES

4

3) RESOLVE IMPORTS

Code example of mutually recursive definitions
with imports, in circular dependencies.

3RESULTS

Monotonicity ensures scope graph query stability by
prohibiting the addition of critical edges, which are
outgoing edges with the same label as a previously
queried path [1].

We address the challenge of precedence order on
different resolution paths in Scala, specifically
concerning objects and imports.

Type checking ensures data type consistency, early error
detection, while facing the inherent challenge of name
binding.

Scope graphs offer a promising approach to handle
intricate name resolution rules in type checkers, providing
a uniform and language-independent model.

object O {
 def f: Int = g
 import N._
 def g: Int = h
}

object N {
 import O.f
 def h: Int = f
}

2

5 CONCLUSION

Responsible Professor:
 Casper Bach Poulsen

Supervisors:
 Aron Zwaan & Thomas Durieux

RQ: Can we use a Haskell library for phased scope graph
construction to type check a targeted Scala subset?

 Radu Mihalachiuta
r.g.mihalachiuta@student.tudelft.nl

REFERENCES:
[1] ROUVOET, A., VAN ANTWERPEN, H., BACH POULSEN, C., KREBBERS, R., & VISSER, E. (2020). KNOWING
WHEN TO ASK: SOUND SCHEDULING OF NAME RESOLUTION IN TYPE CHECKERS DERIVED FROM
DECLARATIVE SPECIFICATIONS. PROCEEDINGS OF THE ACM ON PROGRAMMING LANGUAGES,
4(OOPSLA), 1-28.
[2] HENDRIK VAN ANTWERPEN, CASPER BACH POULSEN, ARJEN ROUVOET, AND EELCO VISSER. SCOPES
AS TYPES. PROC. ACM PROGRAM. LANG., 2(OOPSLA), OCT 2018.

i) Develop a type checker that addresses precedence, name resolution
complexities, and the challenge of monotonicity. We aim to combine
automated scheduling convenience with the flexibility of the Haskell library.

iii) Qualitatively analyze and compare the declarativity and feature
extensibility of our type checker against the mini-Statix approach by
Rouvoet et al. [1].

ii) Explore the number of phases required for the type checker and
investigate the impact of explicit phasing on our implementation.

The type checker is powered by a core algorithm consisting of four phases,
which are exemplified through the program on the right.

1) REGISTER OBJECTS

high level of reliability and precision;
lack of support for sequenced imports and nested
wildcard shadowing;

The promising, quantitative results are comparable to others from
literature [1], [2]. Our approach is less declarative than mini-Statix,
yet compensates through extensibility and modularity.

FUTURE WORK:
1) Addressing the unsupported test cases to achieve full coverage,
improving accuracy and the usability of the type checker.
2) Incorporating additional features into the targeted Scala subset,
thereby enhancing its extensibility.
3) Implementing similar type checkers for other languages.

ADDRESSED CHALLENGES:

 2) DECLARE VARIABLES

 4) TYPE-CHECK THE PROGRAM

Experimental results for the extended mini-Statix test suite.

