# Investigating the Extent to which Inverse Reinforcement Learning can Learn **Rewards from Noisy Demonstrations** Charalampos Perdikis – charalampos@perdikis.ac.cy Responsible Professor: Dr. Luciano Cavalcante Siebert Supervisor: Angelo Caregnato Neto

### 1. Introduction

Inverse Reinforcement Learning (IRL) infers the underlying reward function from observed behavior. Hence, IRL extracts implicit knowledge from expert demonstrations to generate a reward function.



# 2. Main Research Question

This research aims to **investigate the extent to** which IRL can learn rewards from noisy demonstrations.

# **3. Maximum Entropy IRL**

Maximum Entropy Inverse Reinforcement Learning (MaxEnt IRL) [1] aims to find a reward function that not only replicates the observed behavior but also maximizes the entropy or uncertainty of the expert's actions.

This allows for a broader range of possible policies that could explain the expert's demonstrated actions.



# 4. Methodology

To answer the research question, we followed the steps below:

- 1. Use an implementation of MaxEnt IRL [2].
- 2. Decide and set up a Markov Decision Process (MDP) environment .

3. Create optimal and noisy expert demonstrations for input to the IRL.

4. Compare the noisy and optimal recovered rewards.

#### 5. Experiments

For our experiments we:

- Set up a 5x5 Grid World MDP as in Figure 1.
- Constructed optimal demonstrations for the defined reward in Figure 1.
- Similarly created noisy demonstrations for three types of noise.
- Compared the optimal and recover rewards according to some metrics.

Figure 1: 5x5 Grid World with the defined reward used in generate expert trajectories.









In the tables 1-3 below, we show results using the metric Failure to Achieve Goal, which counts the number of times the recovered reward failed to produce a path that reaches the final state of the grid, from 100 iterations:



# Random Events Noise (REN)

This noise refers to unexpected and unpredictable events that could occur during the execution of actions in an environment.

# Random Bias Noise (RBN)

This noise introduces random behavior observed in all demonstrations in a similar way, resulting in a form of bias.

# Sparse Noise (SN)

Describes demonstrations were a proportion of them is considered optimal, while the rest have significant anomalies.

# 6. Results

REN probability – Number of failures

| 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 |
|-----|-----|-----|-----|-----|-----|-----|
| 0   | 0   | 0   | 0   | 0   | 2   | 17  |

Table 1: Probabilities of REN in the upper row and the number of failures in the lower row.

| R             | RBN probability – Number of failures |      |      |      |      |      |      |
|---------------|--------------------------------------|------|------|------|------|------|------|
| ).05          | 0.10                                 | 0.15 | 0.20 | 0.25 | 0.30 | 0.35 | 0.40 |
| <b>)</b><br>- | 0                                    | 7    | 13   | 10   | 25   | 36   | 47   |

0.1

#### 7. Conclusion

 Random Events Noise is tolerable with some problems in high probabilities.

Results from other metrics we used, also suggest the above conclusions.

#### 8. Future Work

This research can be extended by:

- Modelling more noise types.
- Mixing noises.
- Changing the IRL algorithm.
- Increasing the complexity of the grid.

# References

1438, 01 2008.



Table 2: Probabilities of RBN in the upper row and the number of failures in the lower row.

#### SN influence factor – Number of failures

| 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 |
|-----|-----|-----|-----|-----|-----|-----|
| 0   | 0   | 0   | 0   | 0   | 0   | 0   |

Table 3: Influencing factor of SN in the upper row and the number of failures in the lower row.

- From the above results we concluded that:
- Random Bias Noise is detrimental to MaxEnt IRL even in low probabilities.
- MaxEnt IRL appears to be robust to our simulated Sparse Noise.

- [1] Brian Ziebart, Andrew Maas, J. Bagnell, and Anind Dey. Maximum entropy inverse reinforcement learning. pages 1433–
- [2] Maximilian Luz. Maximum entropy and maximum causal entropy inverse reinforcement learning
- implementation in python. https://github.com/qzed/ irl-maxent, 2019. Accessed: May, 2023.