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1. Introduction . 4Resuts

* Reinforcement learning (RL) has achieved significant
successes in various domains but many real-life
applications are too costly/risky to directly interact with

the environment to generate training data.

* Behaviour-agnostic RL addresses this challenge by
separating the behaviour policy used for training from the
target policy used for performance evaluation.

e This is called off-policy evaluation and introduces
differences between the probability distributions of states
visited by the policies (state-visitation mismatch).

* A method was developed to correct for these mismatches

even for infinite horizons [1].

¢ This method was then used to create the DICE estimators
that reduce variance and bias to provide more accurate

estimations [2].

2. Research Question

How does the degree of state-visitation mismatch
impact the performance of target policies in behaviour-

agnostic off-policy evaluation?

The following metrics were used to
quantify key aspects:

* State-visitation mismatch: The KL
divergence measures the
difference between 2 probability
distributions.

* Target policy performance: The
cumulative reward is the estimate
of the target policy performance
given by the DICE estimator.

» Effect of state-visitation mismatch
on target policy performance: The
mean squared error (MSE)
calculates the difference between
the empirical and estimated
cumulative reward.

The following variables were used to
generate datasets and run the DICE
estimator on them:
* Environment: Frozen Lake
* Environment size: The dimensions
of the Frozen Lake environment
¢ Alpha (a): How close the behaviour
policy is to the target policy
* Number of datasets: The number
of datasets to generate per alpha
(a) value
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Figure 2: The default Frozen Lake
environment

3. Methodology

Followed by

2. Run the DICE
estimator on
datasets

Figure 1: A flowchart representing the procedure to obtain the results to answer the research question.
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Figure 3: The KL divergence plotted against the MSE for various
alpha (a) values with the default environment.
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Figure 5: The KL divergence plotted against the MSE for various
alpha (a) values with a random 10x10 environment.

Limitations:
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Figure 4: The KL divergence plotted against the MSE for various
alpha (a) values with a random 4x4 environment.
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Figure 6: The KL divergence plotted against the MSE for various
alpha (a) values with a random 50x50 environment.

T = o - =
g=p.2 =04
i at
f" L
-

5. Conclusion & Future Work

+ The KL divergence only works on discrete environments
and not continuous ones.

Conclusion:

3. Combine and

visualise results

Future Work:

+ The experiment only uses 1 environment and 1 DICE
estimator which could influence the results.

* The results suggest that the state-visitation mismatch
may influence the target policy performance.

« However, the research is inconclusive due to the limitation
regarding the variety of datasets.

* Run the experiment with different estimators and on
multiple environments that are bigger or more complex.

+ Consider other metrics for the state-visitation mismatch
that work on continuous environments.



