Evaluating Alternative Metrics for Dysarthric Speech Recognition

methods compare in their effectiveness at evaluating ASR system performance across different severities levels of atypical speech?

References

[1] M. Benzeghiba, R. De Mori, O. Deroo, S. Dupont, T. Erbes, D. Jouvet, L. Fissore, P. Laface, A. Mertins, C. Ris, R. Rose, V. Tyagi, and C. Wellekens, "Automatic speech recognition and speech variability: A review," Speech Communication, vol. 49, no. 10, pp. 763–786, 2007, intrinsic Speech Variations. [Online].

H.C. (Filip) Nguyen Duc Email: H.C.NguyenDuc@student.tudelft.nl Supervisors: Zhenjun Yue, Yuanyuan Zhang EEMCS, Delft University of Technology, The Netherlands

Methodology

<u>State-of-the-art ASR systems</u>

- Whisper employs a transformer architecture that processes audio input to perform multilingual speech recognition, translation, and generation, delivering high accuracy across a diverse set of languages
- Wav2vec 2.0 uses a self-supervised learning approach within a transformer-based architecture to convert raw audio into contextualized representations, enhancing the model's performance on speech recognition tasks without relying heavily on labeled data

<u>Dysarthric Dataset</u>

• TORGO database provides dysarthic data that is split by utterances and by subject severity

Evaluation Metrics

- 1. Word Error Rate (WER) edit distance based metric on word level
- 2. Character Error Rate (CER) edit distance based metric on character level
- 3. Jaro-Winkler Distance scores strings based on their matching characters and the order in which they appear
- 4.BERTscore uses contextual embeddings from BERT model to compute similarity focusing on semantic accuracy

4) **Experimental Setup**

- Whisper large-v2 and wav2vec 2.0 large
- Running TORGO on Whisper and wav2vec 2.0 for single word and sentence utterances
- Cleaned and processed out from ASR system to match TORGO prompts
- Pearson correlation between each evaluation metric and subejct severity

TUDelft

Metric	Correlation Coeff.	P-Value
WER	0.927	< 0.001
CER	0.830	< 0.001
BERTscore	-0.928	< 0.001
Jaro-Winkler	-0.942	< 0.001

Metric	Correlation Coeff.	P-Value
WER	0.865	< 0.001
CER	0.851	< 0.001
BERTscore	-0.866	< 0.001
Jaro-Winkler	-0.864	< 0.001

• The comparison between wav2vec 2.0 and Whisper revealed that wav2vec 2.0 excels in single-word utterances, whereas Whisper better handles the complexities of sentence-level utterances