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O OO 1.

Background

O OO 3.2 MVAE Models

4.2 UMAP Of Model Latent Space [

e Personalised treatment for cancer
benefits from integrating modalities

e Correlation with clinical outcome and
retrieval is difficult and costly

e Multimodal Variational Auto-Encoders
(MVAE) can find a common latent
representation of multiple modalities

e Potentially bring deeper
understanding of cell relations

e Predict modalities for less intensive
data gathering

O OO 2.

Research Question

HOW WELL ARE TRAINED MVAE MODELS
ABLE TO PREDICT OR RECONSTRUCT
MODALITIES IN CANCER CELLS?

e 70-10-20 data split: training,
validation and prediction set
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Schematic of MVAE. Joint distribution
through either MoE or PoE
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e UMAP indicates Product-of-Experts is learning representation of cancer types
e Mixture-of-Experts is not making any distinction between types

of each model, coloured by cancer type.

—> good grouping of cancer types
—> distinction between cancer types

O OO 3.1 Methods
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4.1 Reconstruction and Prediction Loss

O OO

5. Conclusion ]

Comparison based approach of two MVAE Models
>> Mixture—of—Expertsiand Product—of—Expert52
 Based on reconstruction loss to MOFA+% a
linear method for modality integration

« Based on their efficiency in predicting
modalities based on another modality using
two MVAE models

Three Modalities:

e RNA Sequencing RNA-seq,  GCN DNAme

e Gene Copy Number
e DNA Methylation

8418 samples

Real patient data:

Reconstruction Loss per Modality
MOFA+: (Factors=10, views=3, groups=1)
MVAE: (latent_dim=128, batch_size=256, epochs=100, Ir=0.0001)
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Conclusion from Results:

>> PoE has lower reconstruction loss than other
models
>> PoE has a substantially lower loss when doing

cross—-modal predictions compared to MoE
>> DNAme hard to reconstruct/predict for all models

Future work recommendations
>> Reimplementation of Mixture-of-Experts in
Product-of-Experts codebase
>> Grid search of different KL-weights with
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