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1 Introduction

= Previous work [1] has established a way of
embedding high-dimensional data into hyperbolic
space for visualisation purposes.

= This is done using t-SNE: an algorithm that groups
neighbours in lower-dimensional embeddings by
pulling points that are neighbours in the
high-dimensional data closer together.

= We explore a novel way of optimising this

algorithm by the use of a uniform grid on the data.

= As opposed to the previously used quadtree, the
uniform grid offers better runtime complexity.

2 Hyperbolic Space

= We use the Poincaré disk model for hyperbolic
space, which is a unit disk.

= Hyperbolic space has the unique property of
expanding towards the edges of the disk.

= This makes it a good candidate for embedding
arbitrarily sized data, such as trees.

Euclidean vs. Hyperbolic Distances
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Figure: Left: Comparison of Euclidean distance from the
centre of the disk compared to the hyperbolic distance at the
same point. The hyperbolic distance would grow to infinity, but
the Euclidean distance is stopped at 0.9999

Right: Visualisation of the hyperbolic space using a constant
pattern. Source: Weisstein, Eric W. "Poincaré Hyperbolic Disk."
From MathWorld—A Wolfram Web Resource
https://mathworld.wolfram.com/
PoincareHyperbolicDisk.html.
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3 Uniform Grid

= The uniform grid splits up the space of the disk
into equal-sized rectangles.

= The geometric mean of the points in a grid cell is
used to approximate the underlying points.

= The gradient forces for t-SNE are then only
calculated from each point to each grid cell.

= The uniform grid can be built and used in O(m - n)
with n points and m grid cells. The quadtree
solution did this in O(nlogn).

= An optimisation is that the grid fits to the points,
to keep as few grid cells as possible empty, which
increases accuracy. See the figure below.

= Advantage: highly parallelizable.
= Disadvantage: no exact calculation.
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Figure: A visualisation of the uniform grid on some data. Left:
illustration without the aforementioned optimisation. Right:
with the optimisation.
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Figure: An illustration of the summarisation performed by
Barnes-Hut, during the calculation of the forces acting on the
green point. Left is the exact method, right is the
approximation.

4 Experiments and Results

= We compare our solution with the previous
solution with different datasets.

= Each algorithm is run 3 times at different dataset

sizes.

= Our new algorithm provides better runtime
performance and accuracy than the previous

solution.

= At a set grid resolution, our algorithm is linear in
the number of points, while the previous quadtree
solution is log-linear.

Runtimes

Precision/recall of Datasets.MNIST
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Figure: Left: Runtimes of Uniform grid vs. Quadtree (previous

solution).

Right: Precision-recall graph of MNIST at 70,000 points.

Figure: Embeddings of the MNIST dataset (70,000 data points)
for Exact, Quadtree, Uniform grid respectively.

Runtime (s)
Algorithm 10,000 points | 25,000 points | 50,000 points
Exact 318 2,335 7,875
Quadtree 169 418 1,011
Uniform grid 98 263 438

Table: Runtimes in seconds of embeddings of MNIST by
different algorithms.

Choice of Grid Resolution

= The grid resolution provides a trade-off between
runtime and accuracy.

= We experimentally found the optimal size for our
datasets.

= 10,000 - 15,000 is optimal for all tested datasets.

Figure: Left: precisions of MNIST embeddings for different
point counts. Centre: Runtimes of MNIST embeddings at
different point counts. Right: Runtimes of MNIST embeddings
at different grid resolutions.

5 Conclusion

= The uniform grid is a viable alternative to the
quadtree for accelerating t-SNE.

= Our proposed solution can offer better runtime
performance and accuracy than previous
solutions.

= Our proposed solution offers a trade-off between

performance and accuracy by controlling the grid
resolution.
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Github

The source code for this project can be found here:
https://github.com/Milan7843/
hyperbolic-tsne.
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