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G Introduction e Results and discussion

Protein function prediction is the association of a protein with its

role in an organism The k-NN predictors based on embedding similarity outperformed BLAST sequence-

Automated functio.n prediction is a multi-label classification task based annotations (see Fig. 1). The model using ESM1b embeddings performed better Our k-NN models based on embedding
) ) than goPredSim [3] in all categories, and d DeepGOPIus [4] f lecul .

with more than 45,000 labels from the Gene Ontology (GO) anelEEe i el nel GEiEpites, ane SUieEsas Dese U5 [plifer elauler similarity outperformed sequence

function and biological process prediction.

hierarchy [1]. GO has 3 sub-hierarchies: molecular function, based function annotation, and their

biological process, and cellular component. Wesmi M ProBERT | T5xLUs0 M Seqvec BLAST M goPredsim [l DeepGOPIus results were comparable to those from
* Protein sequences can be represented as real-valued vectors using . —— ——— state-of-the-art predictors.
ideas from natural language processing embeddings. Benchmarks on B. subtilis query set
. ; ; 0.7 Molecular function Biological process Cellular component . Embeddings from deep Iearning can
How do unsupervised embeddings models performin |

encode information about bacterial
proteins beyond sequence similarity.

* The performance of all predictors was
affected by high rates of false negatives.

* Complete annotation of novel bacterial

automated protein function prediction for bacteria?

E. coli:
3,441 proteins

F-max
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Swiss-Prot: protein sequences remains a prospect
107,818 proteins for future work in automated function
prediction.
The maximum F-measure (F-max) of the predictors, on the B. subtilis query set. Predictions from ESM1b,
w SeqVec, ProtBERT and T5XLU50 embeddings were made using our k-NN approach.
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