Comparing Performance of ASR Systems on Native Dutch Children and Teenagers: Google vs. Microsoft

Gert van Dijk - Supervisors: Odette Scharenborg, YuanYuan Zhang

1. Introduction

Child Speech Recognition (CSR):

- Accurate ASR is challenging but necessary.
- Crucial for applications aimed at younger people.
- Children make up a large portion of the userbase.
- Create a baseline

2. Method

Jasmin-CGN:

Category	Groups				
Gender	Male (M), Female (F)				
Age	Child, Teenager				
Dialect	N1b, N2c, N3b, N4a				

3. Results

Metric	Child	Teen	Female	Male	N1b	N2c
Google WER	31.55	22.37	26.34	27.55	21.49	29.38
Microsoft	26.96	16.44	21.07	22.30	16.08	25.07
Google	20.34	15.71	17.32	18.71	14.65	18.76
CER						
Microsoft	21.89	17.21	19.12	19.96	16.76	21.77

5. Conclusion and future work

Conclusions:

- Microsoft in terms of WER.
- Google in terms of CER
- Both bias towards teenagers compared to children.

Research Question: How do Google and Microsoft's ASR API compare when ran on native Dutch child and teenager speech?

- Largest companies with ASR systems.
- Comparing for potential future improvements.
- Relevant to a large number of people.
- Reference for choosing a fitting ASR system.

* 100%

* 100%

Metrics: • Word Error Rate (WER): Substitutions + Insertions + Deletions WER =Number of words spoken • Character Error Rate (CER): Substitutions + Insertions + Deletions CER =Number of characters spoken

The results indicate that Microsoft's ASR generally performs better in terms of WER across all demographics, while Google's ASR shows slightly better results in CER.

- Both bias towards N1b compared to all other regions.
- Both slightly bias towards women compared to men.
- Overall Google is slightly less bias in terms of WER and CER

Google and Microsoft:

- Segment files.
- Run all segments on both systems.
- Turn results into dataframe.
- Remove noise files and calculate the errors.

Shortcomings:

- More metrics such as Phoneme Error Rate (PER)
- More data.

Comparison of Google vs Microsoft Differences: WER Difference (Google - Microsoft) N4a N3b N1b N2c Dialect_region Group