
Exploring Program Equivalence as a Means of Comparing Definitional Interpreters
Research Project by
Ruben Backx

Responsible Professor & Supervisor
Casper Bach Poulsen

Supervisor
Cas van der Rest

How effective is program equivalence for
comparing definitional interpreters?

Two programs can be compared using an
approach introduced by Clune et al. It has been
tested on simple student submissions, but not on
complex interpreters students write in a course
like Concepts of Programming Languages. The
ability to use program equivalence to verify
student-written interpreters would reduce the
need to manually write tests.

See right an example of two definitional
interpreters.

data Expr = Val Float | Add Expr Expr | Sub Expr Expr

 | Mul Expr Expr | Div Expr Expr

interp :: Expr -> Float

 interp (Val x) = x

 interp (Add left right) =

 interp left + interp right

 interp (Sub left right) =

 interp left - interp right

 interp (Mul left right) =

 interp left * interp right

 interp (Div left right) =

 interp left / interp right

interp :: Expr -> Float

 interp (Val x) = x

 interp (Add left right) =

 interp left + interp left

 interp (Sub left right) =

 interp left - interp right

 interp (Mul left right) =

 interp left * interp right

 interp (Div left right) =

 interp left / interp right

Figure 1: An example of two definitional interpreters.

Interpreters can be transformed to a logical
formula that will be satisfiable only if the
programs are equivalent. This approach is
sound, i.e. two non-equivalent interpreters are
never recognised as equivalent.

Support for strings and lists added
Extra rules added for better equivalence
checking between interpreters
Pre- and post-processing added to improve
equivalence checking

Figure 2: One of the new rules. Specifically, this
provides better results when interpreters have the left

and right terms of a multiplication swapped.

Program equivalence is able to recognise about
half of the tested modifications as equivalent.
Because of its soundness it is suitable for
verifying student submissions, but its
effectiveness is yet to be tested on real student
submissions.

In combination with other forms of grading,
program equivalence can be also be used to
give students feedback in batches and to build
up a collection of common mistakes.

The amount of interpreters (in)correctly recognised as (non-)equivalent

Figure 3: Experimental results for 3 sets of 40 interpreters.

CSE3000 - Research Project r.w.backx@student.tudelft.nl

Research Question
1

Method
2

Contributions
3

Conclusion
4

