
Analyzing the Impact of Documentation on Performance Metrics in Different

 Continuous Integration Open-Source Projects
Author: Daniel Rachev (d.n.rachev@student.tudelft.nl)

Supervisors: Sebastian Proksch, Shujun Huang

Introduction

Continuous Integration (CI) is a standard practice, but 

the impact of documentation on its performance is 

poorly understood. This study quantitatively 

investigates the link between documentation practices 

and key DevOps metrics (KPIs) in 670 open-source 

projects.

Research Questions

RQ1: Is documentation completeness correlated with 

delivery frequency?

RQ2: Does documentation update frequency correlate 

with defect count?

RQ3: Are documentation changes in release cycles 

correlated with mean time to recovery for reported 

issues?

Methodology

Data Selection

We gathered 670 CI projects following a set of criteria:

• Python, JavaScript, TypeScript, Java, C#, C++, PHP

• Not a fork / archived project

• > 50 stars, ≥ 50 commits, ≥ 20 releases

• ≥ 100 issues, and ≥ 75% of them labeled

Metrics

Analysis

We analyzed 12 months of data using Generalized 

Additive Mixed Models (GAMMs) to model non-linear 

relationships.

Results

RQ1: Documentation completeness has a "tipping 

point" for delivery frequency.

Delivery frequency increases dramatically when 

documentation completeness score exceeds +3.0, 

indicating a critical mass effect.
Conclusions

Key Takeaways for Practitioners

• Invest in Excellence: Basic docs are helpful, 

but achieving a high standard can accelerate 

delivery speed.

• Doc Update Ratio as a Health Metric: If the 

ratio is too low (<20%), you're accumulating 

technical debt. Too high (>55%) may signal 

disruptive refactoring.

• Technical Docs > Long Release Notes: 

When an issue occurs, developers need clear, 

up-to-date technical documentation to solve it. 

Focus effort where it has the most impact.

Limitations & Future Work

• Limitations: Bug identification is keyword-

based; documentation analysis is limited to the 

repository itself (e.g., no external wikis).

• Future Work: NLP to analyze documentation 

content quality; apply causal inference models.

RQ2: A "sweet spot" exists for documentation update 

frequency.

Defect counts are lowest when 20-55% of commits 

update documentation, suggesting a healthy project 

rhythm.

RQ3: The volume of release notes does not impact 

recovery time.

No significant correlation was found between release 

note size and MTTR, suggesting length is not a proxy 

for usefulness in incident recovery.

Metric How We Measured It
Completeness 
Score

Composite of standard files, their 
length, & comment volume

Update Ratio % of commits in 30 days changing docs
Release Size # of release note lines per 30 days
Delivery Freq. # of official releases per 30 days
Defect Count # of open "bug" issues per 30 days
MTTR Avg. time to close "bug" issues


	Slide 1

