Analyzing the Impact of Documentation on Performance Metrics in Different
Continuous Integration Open-Source Projects

Author: Daniel Rachev (d.n.rachev@student.tudelft.nl)

Supervisors: Sebastian Proksch, Shujun Huang

]
TUDelft

Introduction

Continuous Integration (Cl) is a standard practice, but
the impact of documentation on its performance is
poorly understood. This study quantitatively
iInvestigates the link between documentation practices
and key DevOps metrics (KPIs) in 670 open-source
projects.

Research Questions

RQ1: Is documentation completeness correlated with
delivery frequency?

RQ2: Does documentation update frequency correlate
with defect count?

RQ3: Are documentation changes Iin release cycles
correlated with mean time to recovery for reported
iIssues?

Methodology

Data Selection

We gathered 670 CI projects following a set of criteria:
» Python, JavaScript, TypeScript, Java, C#, C++, PHP
* Not a fork / archived project

« > 50 stars, 2 50 commits, = 20 releases

« =100 issues, and = 75% of them labeled

Metrics

m How We Measured It

Completeness Composite of standard files, their
Score length, & comment volume

Update Ratio % of commits in 30 days changing docs
Release Size

of release note lines per 30 days

Delivery Freq. of official releases per 30 days
Defect Count of open "bug" issues per 30 days
MTTR Avg. time to close "bug" issues

Analysis

We analyzed 12 months of data using Generalized
Additive Mixed Models (GAMMs) to model non-linear
relationships.

Results

RQ1: Documentation completeness has a "tipping
point" for delivery frequency.

Effect of Doc Completeness Score (Std)
5

o

Predicted Delivery Frequency

Doc Completeness Score (Std)

Delivery frequency Increases dramatically when
documentation completeness score exceeds +3.0,
Indicating a critical mass effect.

RQ2: A "sweet spot" exists for documentation update
frequency.

Effect of Doc Update Ratio

0.5 ..-""".--.""'

=
N

o
w

-
P

Effect on log(Defect Count + 1)

-
H

0.0 U R e | | |
0% 20% 40% 60% 80% 100%

Documentation Update Ratio

Defect counts are lowest when 20-55% of commits
update documentation, suggesting a healthy project
rhythm.

RQ3: The volume of release notes does not impact
recovery time.

Effect of Release Doc Size (5td)

=
o

-‘__.n.--—-_.- ‘-r.-'-__‘-l

—
_—
L p—___
. —

.-.-—--

I
=
P

L

Effect on log(MTTR + 1)
=
fd
-
I|.-..."-- .il'.""‘..‘-
M P
"
\
/)
/! H'-.
J !
i
|
\
!
!
!
r !
/ !
!
I
|
A
\ \
"|.
L} !
! %
\ %
A)
|
!
!
! !
4
i !

I
o
T

—-0.6

LN RN O s e e I [|
-2 -1 0 1 2z 3

Within-Project Release Doc Size (Std)

No significant correlation was found between release
note size and MTTR, suggesting length is not a proxy
for usefulness in incident recovery.

Conclusions

Key Takeaways for Practitioners

* |nvest in Excellence: Basic docs are helpful,
but achieving a high standard can accelerate
delivery speed.

 Doc Update Ratio as a Health Metric: If the
ratio is too low (<20%), you're accumulating
technical debt. Too high (>55%) may signal
disruptive refactoring.

 Technical Docs > Long Release Notes:
When an issue occurs, developers need clear,
up-to-date technical documentation to solve It.
Focus effort where it has the most impact.

Limitations & Future Work

 Limitations: Bug identification is keyword-
based; documentation analysis Is limited to the
repository itself (e.g., no external wikis).

 Future Work: NLP to analyze documentation
content quality; apply causal inference models.

	Slide 1

