Stacking High-Level Fuzz Mutations in Big Data Applications

How does stacking high-level fuzz mutations affect the test performance for big data applications?

Background

1		
	>	

Fuzz testing is an automated testing technique where input is mutated to find new paths in code.

BigFuzz is a newly proposed method which applies fuzz testing to Big Data Applications.

High-level mutations are error type guided mutations based on real faults.

Stacking Methods

Random Stack: Stack mutations randomly

Single Stack: Apply at most one mutation per datapoint

Smart Stack: Stack mutations following the stack rules

Stacking rules

Conclusion

- More unique failures are found in less tests
- Amount of unique failures found is more reliable
- Best performing stacking algorithm differs per benchmark

Future Work

- Apply the stacking of mutations on a more diverse benchmark suite
- Improve the stacking of mutations by extending the rules set or use biased high-level mutations

M7

