
Application

Kernel

Hardware

Application

Sandbox

Kernel

Hardware

Avg syscalls blocked

Dynam
ic tr

acer

sy
sfi

lte
r

Confine

Sourc
ealy

ze
r

Bin
aly

ze
r -

 sy
sc

alls

Bin
aly

ze
r -

 cfg
0

50

100

150

200

250

300

350

Avg analysis time (s)

Dynam
ic tr

acer

sy
sfi

lte
r

Confine

Sourc
ealy

ze
r

Bin
aly

ze
r -

 sy
sc

alls

Bin
aly

ze
r -

 cfg
0

5

10

15

20

Avg additional syscalls blocked

Dynamic tracer Temporal specialization
0

2

4

6

8

10

12

Setup difficulty (1-5)

Dynam
ic tr

acer

sy
sfi

lte
r

Confine

Sourc
ealy

ze
r

Bin
aly

ze
r

Te
m

pora
l s

pecializ
atio

n
0

1

2

3

4

System Call SandboxingAuthor: Benjamin Selyem Responsible Professor: Alexios Voulimeneas

1. Introduction & Background

System call: Talk to hardware through kernel (Figure 1)

Sandboxing: Restrict system calls to minimal required set (Figure 2)

Problem: Which calls to block and which ones to allow?

Solution: Analyse applications, find out which calls are needed

Gap: Static vs Dynamic analysis & Single vs Multi phase model (Figure 3)

2. Research questions & Contributions

How can dynamic analysis method be used to identify the used system calls?1.
What is the runtime and accuracy of single phase model static analysis tools?2.
What is the runtime and accuracy of multi phase model static analysis tools?3.

Dynamic analysis tool
Analysis of various static analysis solutions
Comparison of dynamic vs static and single phase vs multi phase approaches

3. Dynamic tracer

Gather list of system calls used, using ptrace
Traces multiple processes & threads
Records process structure and system calls (Figure 4)
Supports multi phase tracing
Requires exploration of many program states

4. Experiment setup

Test programs: ls (v8.28), sqlite3 (v3.22), redis (v4.0.9)

Analysis tools: Chestnut [1], Confine [4], temporal-specialization [3], sysfilter [2]

Measurements: Runtime, Accuracy

5. Results & Discussion

6. Conclusion

References
[1] Claudio Canella, Mario Werner, Daniel Gruss, and Michael Schwarz. Automating seccomp filter generation for linux
applications. In Proceedings of the 2021 on Cloud Computing Security Workshop, CCSW ’21, page 139–151, New York, NY, USA,
2021. Association for Computing Machinery.
[2] Nicholas DeMarinis, Kent Williams-King, Di Jin, Rodrigo Fonseca, and Vasileios P. Kemerlis. sysfilter: Automated system call
filtering for commodity software. In International Symposium on Recent Advances in Intrusion Detection, 2020.
[3] Seyedhamed Ghavamnia, Tapti Palit, Shachee Mishra, and Michalis Polychronakis. Temporal system call specialization for
attack surface reduction. In Proceedings of the 29th USENIX Conference on Security Symposium, SEC’20, USA, 2020. USENIX
Association.
[4] Seyedhamed Ghavamnia, Tapti Palit, Azzedine Benameur, and Michalis Polychronakis. Confine: Automated system call policy
generation for container attack surface reduction. In International Symposium on Recent Advances in Intrusion Detection, 2020

Syscall

Access

Figure 1: Regular syscall flow

Syscall

Pass / Reject

Access

Figure 2: Sandboxed flow

Start Stop

Setup StopMain phase

!

Single phase model

Multi phase model

Figure 3: Single phase & multi phase model Figure 4: The dynamic tracer

Dynamic tracer blocks 14% more syscalls,
than Sourecalyzer on average

Dynamic tracer is 4.5x faster
than Confine on average

Multi phase analysis blocks 11 more
syscalls during the second phase

than single phase analysis on average

Environment: Ubuntu 18.04 Docker container

Sourcealyzer is hardest to set up
due to little setup instructions

and a lot of compiling

Dynamic analysis

Allows for custom usage profile

Fast analysis times

Requires extensive test cases

Second step analysis to reduce
amount of incorrectly blocked

system calls

Static analysis

Good amount of blocked system calls,
with slight underestimation

Slower analysis time as programs scale

Difficult setup and maintainability

Pre-computing CFG and parallelism

Multi phase model

Better security through more
fine-grained filters

Need to determine transition
point manually

Instruction level transition points

Multiple transition points

Possible future work

Investigate if programs lose any
functions after applying the filters

Expand the set of tested programs


