Analogies for Machine Learning Loss Functions

An Empirical Study on Understanding and Motivation

1 - Introduction

Conclusion

D

e Machine learning is increasingly essential across all sectors — from

healthcare to agriculture, and from cybersecurity to e-commerce [1].

* Yet, educational methods for teaching machine learning concepts
remain underexplored [2].

“We need to learn how to teach machine learning.” — Amy J. Ko

e Loss functions are the mechanism by which ML algorithms are
evaluated to be accurate or not, therefore it is of great importance
that they are understood correctly.

Research question:

How does the use of analogies in explaining loss functions of
machine learning algorithms affect the conceptual understanding
and motivation to learn in Computer Science students?

2 - Research method

Analogy creation

Analogies for 10 ML loss functions were generated
using ChatGPT-40, designed to map abstract ML
concepts to relatable real-world scenarios.

Expert evaluation

ML-literate participants (n = 15) rated the
analogies using a structured survey, evaluating
concept coverage, mapping strength, and

metaphoricity [3] for each analogy.

Student testing

An A /B study with 22 first-year CS students
measured the impact of analogies on conceptual

understanding and learning motivation through
pre/post quizzes and the RIMMS survey [4].
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You saw a person and you're now
describing them to a sketch artist who
hasn’t seen them. The sketch artist
draws a portrait based on your

the sketch to the real person. The more
: it differs, the higher the reconstruction
i error

3 - Example analogy

i Reconstruction error analogy

i description. Once finished, you compare

g Expert evaluations

Experts rated analogies for all 10 loss
functions. The best-rated were those for
Manhattan Distance and Reconstruction
Error.

The agreement between raters was

generally low across nearly every analogy.
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e While the analogies were generally well-received by experts, student
testing showed no conclusive improvement in either conceptual
understanding or motivation to learn.

e Possible reasons for these results are: small sample sizes, increased
cognitive load introduced by the analogies, or the analogies not being
sufficient to increase the conceptual understanding or motivation of
the students.

e The low inter-rater agreement could be attributed to the inherent
subjectivity in rating analogies. Another reason could be the different
educational backgrounds of the experts.

e Despite the inconclusive outcome, the study suggests further
exploration, as analogies remain a promising tool in ML education.
They have shown benefits in other, similar domains, like programming
and computer science.

e This work contributes a reproducible framework for analogy
evaluation and a set of 10 expert-rated and 3 student-tested analogies
that can be adapted for future educational use.

Future work:
Future research should focus on the long-term effects of analogies on
knowledge retention. Especially since loss functions are foundational

e |
Knowledge gain:
Across the three tested analogies — MSE,
Reconstruction Error, Manhattan

Student tests

Distance — no significant improvement
in test scores was observed when
analogies were included.

Motivation gain:

Students in the control group, having no
analogies in their test, reported slightly
higher motivation scores across all
motivation categories, but differences
were not statistically significant.
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concepts in machine learning, and will be required knowledge for any
student in the field.
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analogies that this research
project explored!

https:// ml—teachmg—analogles. github.io/
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