# Analogies for Machine Learning Loss Functions An Empirical Study on Understanding and Motivation

### 1 - Introduction

- Machine learning is increasingly essential across all sectors from healthcare to agriculture, and from cybersecurity to e-commerce [1].
- Yet, educational methods for teaching machine learning concepts remain underexplored [2].

"We need to learn how to teach machine learning." – Amy J. Ko

• Loss functions are the mechanism by which ML algorithms are evaluated to be accurate or not, therefore it is of great importance that they are understood correctly.

#### Research question:

How does the use of analogies in explaining loss functions of machine learning algorithms affect the conceptual understanding and motivation to learn in Computer Science students? .....

### 2 - Research method



#### Analogy creation

Analogies for 10 ML loss functions were generated using ChatGPT-40, designed to map abstract ML concepts to relatable real-world scenarios.



#### Expert evaluation

ML-literate participants (n = 15) rated the analogies using a structured survey, evaluating <u>concept coverage</u>, <u>mapping strength</u>, and <u>metaphoricity</u> [3] for each analogy.



**TUDelft** 

#### Student testing

An A/B study with 22 first-year CS students measured the impact of analogies on conceptual <u>understanding</u> and <u>learning motivation</u> through pre/post quizzes and the RIMMS survey [4].

#### - Example analogy 3

#### Reconstruction error analogy

You saw a person and you're now describing them to a sketch artist who hasn't seen them. The sketch artist draws a portrait based on your description. Once finished, you compare the sketch to the real person. The more it differs, the higher the reconstruction error

### - Research findings



#### Expert evaluations

Experts rated analogies for all 10 loss functions. The best-rated were those for Manhattan Distance and Reconstruction Error.

The agreement between raters was generally low across nearly every analogy.



#### Student tests

#### Knowledge gain:

Across the three tested analogies – MSE, Reconstruction Error, Manhattan Distance – no significant improvement in test scores was observed when analogies were included.

#### Motivation gain:

Students in the control group, having no analogies in their test, reported slightly higher motivation scores across all motivation categories, but differences were not statistically significant.

Ahmet Arif Özmen – a.a.ozmen@student.tudelft.nl Delft University of Technology - CSE3000 Research Project







## 5 - Conclusion

- While the analogies were generally well-received by experts, student testing showed no conclusive improvement in either conceptual understanding or motivation to learn.
- Possible reasons for these results are: small sample sizes, increased cognitive load introduced by the analogies, or the analogies not being sufficient to increase the conceptual understanding or motivation of the students.
- The low inter-rater agreement could be attributed to the inherent subjectivity in rating analogies. Another reason could be the different educational backgrounds of the experts.
- Despite the inconclusive outcome, the study suggests further exploration, as analogies remain a promising tool in ML education. They have shown benefits in other, similar domains, like programming and computer science.
- This work contributes a reproducible framework for analogy evaluation and a set of 10 expert-rated and 3 student-tested analogies that can be adapted for future educational use.

#### Future work:

Future research should focus on the long-term effects of analogies on knowledge retention. Especially since loss functions are foundational concepts in machine learning, and will be required knowledge for any student in the field.

# Scan the QR-code For our website containing all analogies that this research project explored! https://ml-teaching-analogies.github.io/

#### References

[1] Iqbal H. Sarker. Machine Learning: Algorithms, Real-World Applications and Research Directions. SN Computer Science, 2(3):160, 5 2021. doi:10.1007/s42979-021-00592-x. [2] Rebecca Fiebrink. Machine Learning Education for Artists, Musicians, and Other Creative Practitioners. ACM Transactions on Computing Education, 19(4):1–32, 12 2019. doi:10.1145/3294008. [3] Bhavya Bhavya, Yuri Noviello, Chris Palaguachi, Yang Zhou, Suma Bhat, and Chengxiang Zhai. Long-Form Analogy Evaluation Challenge. https://sites.google.com/ illinois.edu/analogyeval24/analogy-evaluation-criteria [4] Nicole Loorbach, Oscar Peters, Joyce Karreman, and Michaël Steehouder. Validation of the Instructional Materials Motivation Survey (IMMS) in a self-directed instructional setting aimed at working with technology. British Journal of Educational Technology, 46(1):204–218, 1 2015. doi:10.1111/bjet.12138.

### Supervisors: Gosia Migut - Ilinca Rențea - Yuri Noviello