
Surrogate Reloaded: Fast Testing for Deep
Reinforcement Learning with Bayesian Neural Networks

Rodrigo Montero González1 supervised by Dr. Annibale Panichella1, Antony Bartlett1

1EEMCS, Delft University of Technology, The Netherlands

Background

Deep Reinforcement Learning (DRL) has enabled breakthroughs in fields
like robotics, autonomous driving, and strategic games by allowing agents
to learn complex behaviours through trial‐and‐error in simulated environ‐
ments [1]. While DRL agents excel during training, testing their robust‐
ness remains a bottleneck. First, full simulation runs are computationally
expensive. Secondly, failures are rare but critical, making them difficult to
uncover through random testing. To address this, surrogate models have
been proposed: instead of running full simulations, these models predict
whether a given environment configuration will lead to failure, reducing
testing cost. Previous work by Biagiola et al. [1] explored this idea using
a Multi‐Layer Perceptron (MLP) as the surrogate model. Building on their
approach, we design a Bayesian Neural Network (BNN) surrogate model
to predict failure cases in DRL environments and use it to guide a Genetic
Algorithm (GA) in prioritising high‐risk configurations without running full
simulations. Our case study is based on the HighwayEnv simulator’s Park‐
ing environment [2], where an autonomous vehicle must navigate into a
goal lane while avoiding parked cars.

Fig: Example configuration in the HighwayEnv Parking environment [2]. Adapted from Biagiola et al. [1].

Research Questions

The following main research question guides the study:
RQ1: How do Bayesian Neural Networks compare to Multi‐Layer Per‐
ceptrons as surrogate models for failure prediction in Deep Reinforce‐
ment Learning?

This study is further decomposed into two sub‐questions:
RQ1.1: How do their predictive performances compare, particularly
under class imbalance?

RQ1.2: How effectively can BNNs guide Genetic Algorithm‐based test
generation toward discovering new failure scenarios?

Design methodology

Surrogate Modelling Workflow

1. Data Preprocessing: Reused data from Biagiola et al. [1], filtering
for later DRL training stages to better simulate realistic agent
performance. Applied an 80/20 train‐test split.

2. BNN Model Development: Built Bayesian Neural Networks using
the Blitz library, which supports scalable variational inference.
Models use Gaussian priors and variational layers trained by
minimising the Evidence Lower Bound (ELBO), composed of
negative log‐likelihood and KL divergence.

3. Hyperparameter Tuning: Conducted a grid search over 144 BNN
configurations, spanning hidden layers, layer sizes, oversampling
ratios, and imbalance strategies (class weighting, augmentation).
Each configuration was trained across five seeds and ranked by
validation AUC‐ROC.

4. Failure Search via GA: Integrated the top BNN models into a
Genetic Algorithm to guide test generation, replacing full DRL
rollouts and enabling search over high‐risk configurations more
efficiently.

5. Evaluation and Comparison: Selected the best BNN based on GA
failure discovery. Compared it to the MLP baseline using test set
metrics, Mann‐Whitney U test and Vargha‐Delaney effect size.
Also evaluated the diversity of discovered failures using entropy
and coverage metrics.

Conclusion and FutureWork

Our findings show that BNNs are a promising alternative to traditional
MLPs for failure prediction in DRL. BNNs achieved comparable gener‐
alisation in data classification and outperformed the MLP in discovering
diverse failures when integrated into a Genetic Algorithm search. This
highlights the value of uncertainty‐aware surrogate models in enhanc‐
ing DRL testing efficiency.

To strengthen generalisability and robustness, future work will extend
the surrogate modelling framework to additional DRL environments
such as the Lane Keeping and Humanoid environments.

Results & Discussion

The classification metrics of the selected BNN and the MLP baseline are
relatively similar, with the BNN achieving higher accuracy, precision, and
F1‐score, though the MLP has better recall. One‐sided Mann‐Whitney U
tests confirm significant improvements for accuracy (p = 0.004) and preci‐
sion (p = 0.005), with a borderline effect in F1 (p = 0.069). This suggests
the BNN offers a more balanced trade‐off between false positives and
false negatives.

Table 1. Comparison on test set between MLP and selected BNN (1‐layer, 64‐hidden,
augmented, class‐weighted). Bold: best result.

Metric MLP BNN
Accuracy 0.784 ± 0.040 0.877 ± 0.014
Precision 0.110 ± 0.023 0.191 ± 0.034
Recall 0.477 ± 0.043 0.306 ± 0.071
F1‐Score 0.178 ± 0.031 0.191 ± 0.034
AUC‐ROC 0.697 ± 0.028 0.703 ± 0.011

In the GA‐based failure discovery task, the BNN outperforms the MLP in
both effectiveness and diversity. It discovers significantly more failures
(p = 1.4 × 10−7), and its output diversity is substantially greater in terms of
coverage (p = 6.6×10−15) and entropy (p = 5.0×10−6). Input diversity was
comparable between the models, as both received the same configuration
features, but the BNN ultimately uncovered a broader range of failure be‐
haviours.

Table 2. Comparison of diversity and performance metrics between the MLP baseline
and BNN across 50 GA runs. Input diversity is measured by coverage and entropy of
input configurations; output diversity is measured from the failure outputs. Bold
indicates a significant increase.

Category Metric MLP BNN
Performance Failing Environments 14.98 ± 3.24 19.14 ± 3.75

Input Diversity Coverage (%) 50.00 52.00
Entropy 0.00 1.17

Output Diversity Coverage (%) 43.36 75.64
Entropy 22.06 50.68

References

[1] M. Biagiola and P. Tonella, “Testing of deep reinforcement learning agents with surrogate models,”
ACM Transactions on Software Engineering and Methodology, vol. 33, no. 3, pp. 1–33, Mar. 2024,
ISSN: 1557‐7392. DOI: 10.1145/3631970.

[2] E. Leurent, “An environment for autonomous driving decision‐making,” GitHub repository, 2019,
https://github.com/eleurent/highway-env.

https://doi.org/10.1145/3631970
https://github.com/eleurent/highway-env

	References

