Evaluating the Suitability of Interpolation-based Re-Ranking for Ad-Hoc Retrieval Lucia Navarčíková **TUDelft**

01. Introduction

- Ad-hoc Retrieval: given a query you want to retrieve relevant documents and rank them, low-latency constraints
- **Sparse Retrieval:** Traditional approach based on term frequency , fast and efficient, limited to exact terms -> vocabulary mismatch problem
- **Dense Retrieval:** Condensed document representation, are able to capture semantic relationships, more complex -> higher latency, expensive to compute
- *Hybrid Retrieval:* Compute ranking in parallel using a dense and a sparse model and combine them to obtain final ranking -> *missing document scores*
- *Missing document score :* sets obtained by sparse and dense retrieval are not identical, one of the document scores is missing for interpolation
- Interpolation-based re-ranking: technique where a sparse model is used to select a subset of relevant candidates and a more complex model is used to determine final ranking
- FAST_FORWARD indexes [1] framework facilitating interpolation-based reranking utilizing dual encoder architecture

02. Research Question

How does interpolation-based re-ranking (using FF indexes) compare to dense and hybrid retrieval models in terms of ranking performance and latency?

- What is the importance of the lexical component in hybrid retrieval RQ1 models and interpolation-based re-ranking, respectively?
- To what extent do missing document scores impact ranking RQ2 performance in hybrid retrieval models and how can this problem be mitigated?

Retr

- Inte
- Der
- Hyl

Miss

- Av
- M
- Ze
- Dr

Dat

03. Methodology						FiQA-2018		NF Corpus			TREC-DL-Psg'19				
• 1 A	1						nDCG ₁₀	R_{100}	RR_{10}	$nDCG_{10}$	R ₁₀₀	RR_{10}	nDCG ₁₀	R_{100}	RR_{10}
ieval Approaches					vbrid Retrieval										
erpolation-based Re-ranking - BM25 [2] + TCT-ColBERT [3]				119											
nse Retrieval - TCT-ColBERT				\hookrightarrow	original scores										
orid Retrieval – BM25 + TCT-ColBERT					$\hookrightarrow \operatorname{drop}$	0.313	0.625	0.379	0.329	0.243	0.535	0.691	0.566	0.808	
						$\hookrightarrow \operatorname{zero}$	0.313	0.627	0.379	0.330	0.273	0.533	0.705	0.615	0.831
sing Score Alternatives		Evaluation Metrics				\hookrightarrow median	0.307	0.594	0.373	0.327	0.278	0.532	0.697	0.586	0.804
verage Score		• RR@10				\hookrightarrow average	0.306	0.590	0.372	0.326	0.279	0.529	0.693	0.577	0.797
edian Score	dian Score		• nDCG@10			normalized scores									
ro on document		• R@100				$\hookrightarrow \operatorname{drop}$	0.314	0.624	0.381	0.329	0.243	0.535	0.688	0.561	0.821
op document		• latency	y			$\hookrightarrow \mathrm{zero}$	0.280	0.608	0.343	0.326	0.267	0.536	0.655	0.585	0.861
asets						\hookrightarrow median	0.309	0.593	0.375	0.328	0.280	0.535	0.692	0.574	0.818
Dataset Name	Task	Domain	Corpus	Query		\hookrightarrow average	0.308	0.585	0.374	0.327	0.280	0.532	0.687	0.566	0.818
FiQA-2018 NF Corpus MS MARCO	Question Answering Information Retrieval Passage-Retrieval	Finance Bio-Medical Misc	57638 3633 8841823	6648 323 6980		Table 3: Ran Retrievers BN	nking Perfor M25 and TC	mance fo CT-ColBE	or differe CRT use	nt missing depths k_S =	score tec = 1000 ar	chniques nd $k_D =$	for hybrid 1000.	retrieval.	

04. Results

	Fi	QA-2018	8	NF	F Corpu	S	TREC-DL-Psg'19			
	nDCG ₁₀	R_{100}	RR_{10}	$nDCG_{10}$	R_{100}	RR_{10}	$nDCG_{10}$	R ₁₀₀	RR_{10}	
Interpolation										
BM25 » TCT-ColBERT	0.316	0.632	0.385	0.334	0.254	0.538	0.693	0.585	0.808	
Dense Retrieval										
TCT-ColBERT	0.265	0.561	0.322	0.267	0.250	0.464	0.670	0.565	0.820	
Hybrid Retrieval										
BM25 + TCT-ColBERT	0.313	0.627	0.379	0.330	0.273	0.533	0.705	0.615	0.831	

Table 4: Ranking Performance. Retrievers use depths $k_S = 1000$ (sparse) and $k_D = 1000$ (dense) with hybrid retrieval reportes with original scores and imputing zero for missing document scores.

Figure 3: Latency results for 100 queries from FiQA-2018. Latency is reported in miliseconds for all stages - first-stage retrieval, re-ranking and interpolation across all retrieval approaches. Hybrid retrieval is reported for original scores with zero imputation

- Hybrid retrieval achieves best ranking performance for ad-hoc
- retrieval but for double per query latency
- [1] [2]

Interpolation-based Re-Ranking

Final Score: $\phi(q,d) = \alpha \cdot \phi_S(q,d) + (1-\alpha) \cdot \phi_D(q,d)$

06. Limitations & Future Work

• Due to time constraints, there is no significance testing • Multiple datasets from different domains would give a more clear picture of interpolation-based re-ranking and hybrid retrieval • Possible experimentation of state-of-the-art sparse and dense models

• End-to-end pipeline experiments on larger datasets, considering index storage and leveraging lightweight-encoders

07. Conclusion

 Normalizing scores to offset scale differences brings no benefit • Best way to deal with missing scores is to zero imputation

• Interpolation-based re-ranking outperforms other approaches on out-of-domain datasets and has lowest overall latency

07. References

- J. Leonhardt, K. Rudra, M. Khosla, A. Anand, and A. Anand, "Efficient Neural Ranking using Forward Indexes," in Proceedings of the ACM Web Conference 2022, Virtual Event, Lyon France: ACM, Apr. 2022, pp. 266–276. doi: <u>10.1145/3485447.3511955</u>.
- S. Robertson and H. Zaragoza, "The Probabilistic Relevance Framework: BM25 and Beyond," FNT in Information Retrieval, vol. 3, no. 4, pp. 333-389, 2009, doi: <u>10.1561/150000019</u>
- S.-C. Lin, J.-H. Yang, and J. Lin, "In-Batch Negatives for Knowledge Distillation with Tightly-Coupled Teachers for Dense Retrieval," in Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), Online: Association for Computational Linguistics, 2021, pp. 163–173. doi: <u>10.18653/v1/2021.repl4nlp-1.17.</u>