
Evaluating the Suitability of Interpolation-based Re-Ranking for Ad-Hoc Retrieval

01. Introduction

Ad-hoc Retrieval: given a query you want to  retrieve relevant documents and
rank them, low-latency constraints
Sparse Retrieval: Traditional approach based on term frequency , fast and
efficient, limited to exact terms -> vocabulary mismatch problem
Dense Retrieval: Condensed document representation, are able to capture
semantic relationships, more complex -> higher latency, expensive to compute
Hybrid Retrieval:  Compute ranking in parallel using a dense and a sparse model
and combine them to obtain final ranking -> missing document scores
Missing document score : sets obtained by sparse and dense retrieval are not
identical, one of the document scores is missing for interpolation
Interpolation-based re-ranking: technique where a sparse model is used to
select a subset of relevant candidates and a more complex model is used to
determine final ranking
FAST_FORWARD indexes [1] - framework facilitating interpolation-based re-
ranking utilizing dual encoder architecture

02. Research Question

How does interpolation-based re-ranking (using
FF indexes) compare to dense and hybrid

retrieval models in terms of ranking
performance and latency?
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04. Results

06. Limitations & Future Work
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07. References

What is the importance of the lexical component in hybrid retrieval
models and interpolation-based re-ranking, respectively?

To what extent do missing document scores impact ranking
performance in hybrid retrieval models and how can this problem be
mitigated?

RQ1

RQ2

Interpolation-based Re-ranking - BM25 [2] + TCT-ColBERT [3]
Dense Retrieval - TCT-ColBERT
Hybrid Retrieval - BM25 + TCT-ColBERT
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Normalizing scores to offset scale differences brings no benefit

Best way to deal with missing scores is to zero imputation

Interpolation-based re-ranking outperforms other approaches on

out-of-domain datasets and has lowest overall latency

Hybrid retrieval achieves best ranking performance for ad-hoc

retrieval but for double per query latency
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Interpolation-based Re-Ranking

Final Score:

Sparse Model Dense Model

Lexical Score Semantic Score

Due to time constraints, there is no significance testing

Multiple datasets from different domains would give a more clear

picture of interpolation-based re-ranking and hybrid retrieval

Possible experimentation of state-of-the-art sparse and dense

models

End-to-end pipeline experiments on larger datasets, considering

index storage and leveraging lightweight-encoders
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