
Introduction
System call sandboxing is a vital security technique that restricts 
applications to a minimal set of system calls, reducing the potential 
attack surface when compromised. Although significant 
advancements have been made in static system call policy 
generation, there is a pressing need for dynamic techniques that 
adapt to different execution phases of various applications like 
servers, media players, databases, etc. This project aims to come up 
with execution phases and analyze essential system calls for PWD 
and NGINX, then compare that with auto-generated policies by tools 
like sysfilter and chestnut’s Binalyzer.

REsearch question
The main research questions are

 What are the essential system calls required for the correct 
operation of selected applications (PWD and NGINX) across 
various execution phases

 How do static system call filtering techniques compare to 
dynamic techniques in terms of accuracy, security, and 
performance

 Can dynamic system call sandboxing adjust more effectively to 
the operational context of an application, thereby providing 
enhanced security without impacting system performance?

EXPERIMENT SETUP
 Design at least 6 different execution scenarios to cover possibly all 

syscalls that may be triggered for PWD and most common 
operational scenario for NGIN

 Unbiased experiment execution environment (Ubuntu 18.04LTS 
docker container

 Clean runtime environment for each run (no interference with 
previous runs

 No application crashes/critical errors are allowed (system call filter 
is invalid then

 Single worker nginx for ease of strace output analysis

METHODOLOGY
 Devise multiple execution scenarios that may cause different 

syscall to get execute
 Run strace for the following scenario
 Analyze syscalls triggered through execution phase, plot them 

and try to empirically find the execution phase
 Apply system call filters for the designed execution phases and 

gather result
 Gather results for the static analysis [1,4
 Compare results

RESULTS
We managed to come up with following execution phases and amount 
of syscalls per policy for

 PWD

 NGINX:

CONCLUSIONS
 Tool Limitations Identified: Comparison of manual and automated 

tools (sysfilter and chestnut) shows gaps on automated tools side 
like clear overapproximation and computational overhead

 Superior Manual Analysis: Manual methods, though not scalable, 
offer more nuanced security policies (Especially phase-specific 
filtering), highlighting the need for advanced AI in automation

 Customization is Key: Security measures must be adaptable to 
specific application behaviors; a one-size-fits-all approach is 
ineffective.

FUTURE WORK
 Develop Advanced Hybrid Tools: Create tools that combine static 

analysis and dynamic monitoring, enabling real-time adaptations to 
emerging security threats

 Reduce Computational Overhead: Investigate methods to 
minimize latency and resource consumption in environments 
implementing dynamic sandboxing

 ML Integration: Explore the use of AI and machine learning to 
automate and improve the precision of system call policy 
generation based on real-time data

 Cross-Platform Compatibility: Develop sandboxing solutions that 
are effective across different operating systems and hardware 
architectures

 Longitudinal Studies: Conduct long-term studies to evaluate the 
durability and effectiveness of hybrid sandboxing approaches 
under continuous operation.

References
[1] Canella et al. "Automating Seccomp Filter Generation for Linux 
Applications". In CCSW 2021. 
[2] Ghavamnia et al. "Confine: Automated System Call Policy 
Generation for Container Attack Surface Reduction". In RAID 2020. 
[3] Ghavamnia et al. "Temporal System Call Specialization for Attack 
Surface Reduction". In USENIX Security 2020. 
[4] DeMarinis et al. "sysfilter: Automated System Call Filtering for 
Commodity Software". In RAID 2020.

Jakub Jarosław Patałuch - 
J.J.Pataluch@student.tudelft.nl



Responsible Professor: Alex Voulimeneas

3 4 5

System call Sandboxing


