Jakub Jarostaw Patatuch -
J.J.Pataluch@student.tudelft.nl

SYSTEM CALL SANDBOXING s roescr soxostmers

INTRODUCTION
System call sandboxing is a vital security technique that restricts RESULTS GUNGLUSIUNS

applications to a minimal set of system calls, reducing the potential We managed to come up with following execution phases and amount

attack surface when compromised. Although significant of syscalls per policy for: S o |
advancements have been made in static system call policy » Tool Limitations Identified: Comparison of manual and automated
generation, there is a pressing need for dynamic technigues that . PWD: PWD ;f_iC)'Sl (sysfilter and CheS:E_nUt) SBOWS gaF}EStC?ﬂ atftOmar;Eed(;EOdS side
adapt to different execution phases of various applications like 5 ke clear overapproximation and computational overneaad.

e Superior Manual Analysis: Manual methods, though not scalable,
offer more nuanced security policies (Especially phase-specific
filtering), highlighting the need for advanced Al in automation.

 Customization is Key: Security measures must be adaptable to
specific application behaviors; a one-size-fits-all approachis
ineffective.

servers, media players, databases, etc. This project aims to come up

with execution phases and analyze essential system calls for PWD At

and NGINX, then compare that with auto-generated policies by tools

like sysfilter and chestnut’s Binalyzer. "

RESEARCH QUESTION .
10

The main research questions are: U

- What are the essential system calls required for the correct manual chestnut sysfiter
operation of selected applications (PWD and NGINX) across

.] Sycall policy generated
various execution phases” | FUTURE WURK

Number of distinct syscalls

- How do static system call filtering techniques compare to Execution Phase System Calls Involved
ggrr\faorm]catnegg?mques In‘terms of accuracy, security, and EEET:; ‘gﬂf;ﬁ;ﬁ‘gmﬁ EEEZZE ﬁgim Develop Advanced Hybrid Tools: Create tools that combine static
. Can dynamic éystem call sandboxing adjust more effectively to ' fstat, mmap, close analysis and dynamic monitoring, enabling real-time adaptations to
he operational context of an application, thereby providin o mogy, ARG iEammEl | Arcipncis; BRTOTeES, emerging security threats .
¢ b ' ot ppt_ A Ay A Setwp ‘munmap, brk » Reduce Computational Overhead: Investigate methods to
ehhanced security withoutimpacting system pertormance: Reading Confguration getcwd, stat minimize latency and resource consumption in environments
METHUDOLUGY ?ﬂﬁ“ﬁf}ﬁi“g iii; WELLE,:: £1034 implementing dynamic sandboxing. | |
R P T TS T » MLIntegration: Explore the use of Aland machine learning to
’ . automate and improve the precision of system call policy
« Devise multiple execution scenarios that may cause different generation based on real-time data.
syscall to get executed » NGINX: Execution Phase | System Calls Involved » Cross-Platform Compatibility: Develop sandboxing solutions that
« Run strace for the following scenarios ARRRHORC NN gjﬁf;cffk- are effective across different operating systems and hardware
« Analyze syscalls triggered through execution phase, plot them Loading Shared Li- | access, openat, read, architectures.
and try to empirically find the execution phases NGINX btiies LRy Sy e, Longitudinal Studies: Conduct long-term studies to evaluate the
» Apply system call filters for the designed execution phases and = Reading Configura- | openat, Fstat, durability and effectiveness of hybrid sandboxing approaches
gather results 00 tion Files pread64 under continuous operation.

Imtializing Logging | openat, fstat, futex
Setting Up Worker | clone,

Processes set_robust_list,
getpid, close,

setsid, umask, dup2,
socketpair, ioctl,

fentl

» Gather results for the static analysis [1,4]
« Compareresults
Opening Necessary | openat, fstat,

EXPERIMENT SETUP
viies ang Ditectories’ | Pradactd, getdentds, [1] Canella et al. "Automating Seccomp Filter Generation for Linux

. : : : : ' manual chestnut sysfilter close _ _
Design at least 6 different execution scenarios to cover possibly all Applications" In CCSW 2021.

Creating and Config- | socket, setsockopt,

75

50

Number of distinct syscalls

25

%Seig![l%;gaé?eaga?%&g?gNeGrl?&for P WD andmost common B Sy U5 Sigal | Fatyaceion— [2] Ghavamnia et al. "Confine: Automated System Call Policy
. . . . Handlers ' Generation for Container Attack Surface Reduction®. In RAID 2020.
) ggg'(ae‘:{i%ﬁﬁgﬁggent execution environment (Ubuntu 18.04LTS DT FroRam gj‘;ﬁd-;‘*-;f;;ﬂcmask |3] Ghavamnia et al. “Temporal System Call Specialization for Attack
. : : : : Entering Event Loop Epﬂ]ljcrea'-te, Surface Reduction® In USENIX Security 2020.
Clean run’ume) environment for each run (no interference with v, epollLctl, [4] DeMarinis et al. "sysfilter: Automated System Call Filtering for
- No application crashes/critical errors are allowed (system call filter ing Reaments Aervissafday:
IS INnvalid then) accept4, recvfrom,

stat, openat, fstat,

- Single worker nginx for ease of strace output analysis writev, write, close,

setsockopt

