
Indoor Location Sensing Using Smartphone Acoustic System
What kind of deep models could be used for indoor location recognition?

How to deploy and evaluate the model on smartphones and make the inference run in real time?

Author

Radoslav Sozonov

radoslav.sozonov@gmail.com

Professor/Supervisor

Qun Song

�� Deep models suitable for location recognitio�
�� System app design deployment and evaluatio�
�� Interference run in real time

�� Research Questions

�� Methodology
�� Two architecture designs are presented in fig. 1�
� client-server one - preprocessing, training and

testing is happening on a remote serve�
� front-end-only one - preprocessing and testing is

happening on a smartphon�
�� For both cases front-end responsible for�
� emitting fixed number of 2 ms 20kHZ chirps every

100ms�
� collecting echo data from the chirp�
�� Models�
� 2 RNNs, 2 DNNs and 2 CNNs models with different

 hyper-parameters for the serve�
� same models but compressed for the front-end�
�� Tensorflow1 APIs - model training, testing and

compression�
�� Metrics - FLOPS, training parameters and time to

train�
�� Data samples�
� 3 different data set�
� 5 different location point�
� place - 19th floor of EWI - sketch in fig. �

�� https://www.tensorflow.org/ Figure 4: Confusion matrix of the best performing CNN

Figure 2: Plan of the 19th floor in EWI

Figure 3: example picture of gray-scale specrotgram

�� Conclusion and Future work
� DNN and CNN better than RN�
� Server-client architecture has better result�
� Test on data collected by different device�
� Impact of second 2ms 20kHZ chirp played

 at the same time with the initial one

�� Process flow
1.1 A fixed number of chirps emitted by a smartphone

1.2 The same device is used for collecting the echo reflections from them

1.3 For the front-end only application the data is preprocessed and converted
to spectrograms as in fig. 3. Data remains on the smartphone. For the client-
server approach it is sent to the server

2.1 On the server the data is preprocessed and converted to spectrograms and
stored in a DB

3.1 In the next step is happening the model training on the server or in a
separate Python environment and models compression

4.1 When models are created, they are used for interference runs with data
collected by the front-end and preprocessed depending where the models are

4.2 The models return localization label of the place

Table 2: Best and worst performing CNN, DNN and RNN models, follows the same notation as in table 1

�� Discussion
�� Test Results�
� server models - best CNN and DNN -

confusion matrix in fig. 4 for the CN�
� compressed models - best CNN�
�� Training results�
� number of parameters correlates with

time to train and FLOPS but not accurac�
�� Interference runs time�
� on server between - 60ms to 100m�
� on front-end 1-2m�
�� Designs comparison - client-server has

better test data results despite taking
more time for classification

Figure 1: On the left is the front-end-only design and on the right is the client
server one - both with arrows for process flow described in section 3.

�� Results

Table 1 : Best performing CNN, DNN and RNN models. C - convolutional filters, D - dense units,

LSTM - LSTM units, DS - data set, Params - parameters. For the DS1, 2 and 3 columns, the first

number is for the server models and the second one for the compressed models

