
Concolic Testing of Interpreters
Philippos Boon Alexaki

Supervisors: C. B. Poulsen
 C. R. van der Rest

Motivation and
Research
Question
Students write
interpreters for CPL.
Giving feedback and
examining correctness
using predefined tests
is not complete.

Can we find errors in
student's interpreters
using concolic testing?
What errors are easy to
catch?

Concolic Testing
Run the program
recording all path
constraints on the input

Path constraint: When an
input variable is used in
a conditional, we record
what constraint was set

Generate new value by
falsifying one of the path
constraints and solving
the set of constraints

Run the program again,
but now we are
guaranteed to follow a
new path

void f(int x) {
 if (x � 0) {
 print(1/x);
 } else {
 error("bug");
 }
}

x=24 !(x � 0) � x=0 Found bug in program

Constraint solving is
not a one-to-one
map with semantics
of the language

Not all possible
types are supported
by the constraint
solver

Nested pattern
matching

Automatically
detecting the class
of the found error

Method
Develop concolic
execution for a core
language

Translate faulty
interpreters into core
language

Generate inputs for
interpreters with
concolic execution

Compare results with
correct interpreters

`

Results
Finds all errors in a simple arithmetic expression
language. Has difficulty finding errors in a
language with closures. Promising first results.

