Synthetic data for damage assessment in aircraft turbines

Eduard Klein Onstenk – <u>e.t.kleinonstenk@student.tudelft.nl</u> – 4930894

Professor: Jan van Gemert – <u>i.c.vangemert@tudelft.nl</u>

Supervisor: Burak Yildiz – <u>b.yildiz@tudelft.nl</u>

Introduction

- ➤ Inside aircraft engine is difficult to inspect
- Components need to be in adequate condition to ensure safety
- Borescope videos allow technicians to inspect the propellor blades
- ➤ This time consuming and error prone task could potentially be solved with Computer Vision techniques
- SLAM and SfM are 3D reconstruction methods that could be used to measure damage.
- How can synthetic data assist?

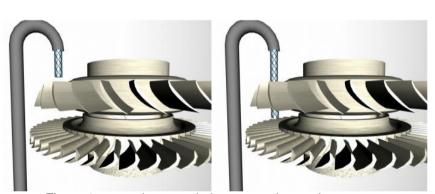


Figure 1: example scenario borescope inspection

Figure 2: Example frame real borescope video

Research questions

- > How can synthetic data be created and used for borescope inspections of aircraft engines?
- > How do SLAM and SfM compare on synthetic borescope videos of aircraft engines?

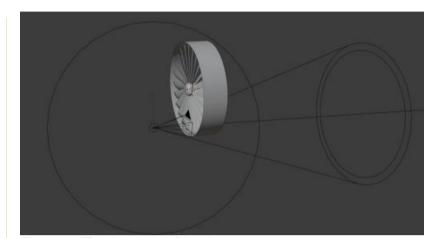


Figure 3: Testing setup Blender

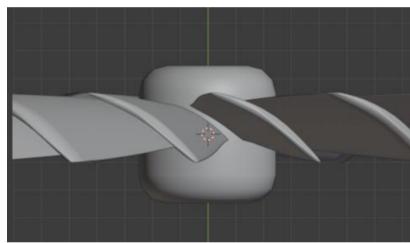


Figure 4: Shape of final model

Methodology

- > Literature study on use cases and how to generate synthetic data.
- Manually modelling data to create synthetic borescope videos
- > Run experiments on the synthetically generated videos to evaluate the data.

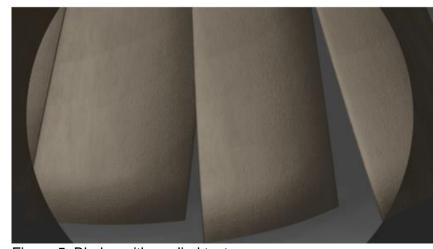


Figure 5: Blades with applied texture

Experiments

> Experiment 1: different shapes for the propeller blades.

Figure 6: cuboid shaped blade

> Experiment 2: different background textures.

Figure 7: three frames of same model with different background textures

> Experiment 3: lighting, texture and speed.

Figure 8: Two pictures above differ in amount of texture, the pictures below differ in the amount of lighting.

Results

Qualitatively the cuboid shaped blades performed a lot better than the rounder shaped ones.

	Gray	Noise	Checker	Voronoi	Metal	Real
SuperGlue	312	248	466	428	93	400-800
SIFT	612	560	1420	1254	577	1500
LoFTR	9980	-	-	-	-	5k

Table 1: number of interest points using different backgrounds and different feature detection algorithms.

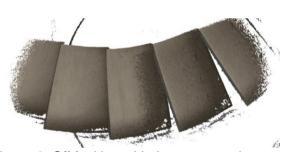


Figure 9: SfM with multi-view stereo, shows that although data of this study failed to act similar to real data, it is possible to produce good models

Conclusion & future work

- > There are multiple possible applications for synthetic data in borescope damage assessment.
 - Improving interest point detection
 - Improving damage detection networks
 - Training personnel
 - Assess performance of algorithms
- > This application requires mostly manual modelling

Experiments

Although it's possible to create promising models of synthetic data using SLAM and SfM, the synthetic data generated in this study fails to consistently act similar to real data.