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1 Background Information

« Change detection is the analysis of changes between data of the same
region at different moments in time [1] (see figure 1)

« Can be done with remotely sensed data, such as satellite images [1]

« Change detection in urban areas for example useful for urban planning
purposes [2]

« Various change detection algorithm types [1]

« Here: Conventional non-classification algorithms that detect binary

' 1/ " 1/ .
change” or “no change” per pixel

o Datasets vary in spatial resolution which is the area a pixel covers on
the Earth surface [3]
« There are different challenges depending on the spatial resolution

2 Research Question

‘ ‘ How does spatial resolution impact
non-classification conventional

pixel-based techniques in the urban
change detection context?

4 Results
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Figure 3: Correlations between metrics and spatial resolutions per algorithm, for combined and individual datasets
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Figure 4: Mean metric values over spatial resolutions (LEVIR-CD 0.5 m/px up to 8 m/px; OSCD 10 m/px up to 40 m/px|
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Figure 1: Concept of Change Detection (images from

LEVIR-CD [4])

3 Methodology

« Urban change detection datasets LEVIR-CD [4] and OSCD [5] are taken at their initial and multiple downsampled resolutions
in total ranging from 0.5 m/px to 40 m/px
« Two change detection algorithms are considered:
o Change Vector Analysis (CVA) [6]: Computes the change vector between the images
o lteratively Reweighted Multivariate Alteration Detection (IR-MAD) [7]: Creates linear combinations of each image and
reduces redundant correlated information between images before taking their difference
« To label pixels as “change” or “no change”, an unsupervised thresholding algorithm is applied [8]
« Performance metrics (see table 1) are calculated, and the results of the algorithms are analysed over the different spatial
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Figure 2: Flowchart of the methodology

« A change detection toolbox is used for the data loading and change detection [9]
o Figure 2 shows a flowchart of the methodology
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Metric Explanation

Accuracy Portion correctly identified as “change” or
“no change”

Precision Portion identified as “change” that was
correct

Recall Portion of “change” correctly identified as
“change”

F-score Harmonic mean of precision and recall

False Alarm  Portion of “no change” incorrectly identified

as “change”

Table 1: Metrics used to evaluate algorithm
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5 Conclusions

« Trends towards improved performance for lower resolutions in terms of all
metrics, to varying degrees
o Dataset specific properties seem to have an impact
 For CVA:
o No clear trend involving all metrics for individual datasets
o Pronounced difference in metric values between datasets
 For IR-MAD:

o More consistent trends in most metrics

o Exception is recall, the portion of “change” correctly identified as “change”

« Overall, low capability of finding the changed areas due to simplicity of
algorithms

6 Limitations & Future Work

« Small size of experiment limits:

o Knowledge of causes for trends

o Generalisability of results
« Influencing factors need to be analysed:

o Image size (pixels)

o Amount of “change”/”no change” pixels in ground truth
« Extending the experiment by adding:

o Different algorithms

o Improved pre-processing steps

o More datasets
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