Tihana Krajtmajer tkrajtmajer@tudelft.nl

How can we convert 2D pixel art into 3D voxels?

Responsible Professor: Petr Kellnhofer | Supervisor: Mathijs Molenaar

Introduction

Reconstructing 3D models from 2D projections is a well-explored topic in Computer Graphics. There are several standard methods, based on different image cues [1].

This project focuses on implementing three of them:

- silhouette intersection
- spatial carving
- gradient-based depth estimation

Additionally, there is no simple tool for artists to convert their existing 2D artwork into 3D voxel models. A simple **user editor** is also implemented.

Research Question

The main research question is: "How can *multiple orthographic* 2D *pixel images* from different viewpoints be used to construct a 3D voxel representation using various fill methods".

Subquestions:

- how accurate is the model reconstruction?
- how well do the algorithms generalize unseen views?
- how does adding user input improve shape quality?

Methodology Silhouette intersection	Results	Average Accuracy
 pixels are projected from the 2D image along the corresponding depth axis if the projections overlap over a 	Silhouette Intersect	0.714
threshold value, the corresponding point in the 3D voxel grid is filled in	Spatial Carving	0.740
 Spatial carving the grid is completely filled in at the start, pixels are projected 	Depth Estimation	0.608
from each image • if the overlap	Hybrid Method	0.750
 Gradient-based Depth Estimation gradients are calculated for each image, filtered to remove edges 	Con-	(and the second

and concavities are detected • the depth is estimated based on pixel intensities of the concave regions

Hybrid Approach

• silhouette intersection was combined with depth estimation

Limitations

- limited number of models used for results
- accuracy is high, but can be improved

Fig 1: results of using user annotation

Conclusion

- the hybrid method performs the best in terms of accuracy
- limited views are available
- user annotations remove excess geometry
- future work should focus on extensions to perspective projections,

References

[1] S. Seitz, B. Curless, J. Diebel, D. Scharstein, and R. Szeliski, "A comparison and evaluation of multi-view stereo reconstruction algorithms," in 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06), vol. 1, 2006, pp. 519–528. DOI: 10.1109/CVPR.2006.19.

Reference models

Silhouette intersection

Spatial carving

Depth Estimation

Fig 2: results of running the four algorithms

silhouette intersection and spatial carving give the best results when

finding different color merging strategies, adding custom viewpoints