
Template ID: persuadingsapphire Size: 48x36

Enabling Log Recommendation Through Machine Learning on
Source Code

Liudas Mikalauskas lmikalauskas@tudelft.nl

● Is used in software development.
● Is a common practice.
● Reveals important runtime information.
● Helps with debugging and maintenance.
● Should only reveal necessary information and not hurt

performance
It is a challenging task [1-3].

1. Logging 4. Results (Figure 3)

What is the performance of a log recommendation model
developed following the methods of Li et al. [1], using
CloudStack® source code as training data?

2. Research question

3. Methodology
● Creating a dataset (Figure 1)

○ Extract Java files
○ Extract methods from each file
○ Build Abstract Syntax Trees
○ Identify blocks
○ Label blocks
○ Remove all statements related to logging
○ For each block extract features (structural token

sequence)
● Deep learning (Figure 2)

○ Embed each token using language processing (NLP)
○ Feed sequences of embeddings to a Recurrent Neural

Network (RNN)
○ Convert output to a binary prediction

● Fine tuning
○ Adjust feature extraction, NLP, RNN algorithms
○ Adjust number of epochs, internal RNN states

● Evaluation
○ Calculate the performance of the model

Figure 2: Neural network
model

Figure 1: Flowchart of dataset creation method. This shows the most general steps

Figure 3: FM,
precision and recall
over 15 epochs

● F-Measure (FM) peaks at epoch 9 with a value of 0.57
(precision - 0.73, recall - 0.47)

● Average FM is 0.53 (average precision - 0.72, recall - 0.43)
● In 15 epochs the model showed potential for learning

with 13% increase in FM and a positive sum of FM
differences between every two neighbours

5. Conclusion

● Methods of Li et al. are reproducible
● Model trained on this specific dataset showed good

performance predicting logs within project
● The performance is similar to that of Li et al. (they gained

FM of 0.55)
● The gap between precision and recall is bigger than that

of Li et al.
● A study on feature filtering was made and it revealed

that not filtering features results in an increase of all
tested metrics

6. Future recommendations
● Study computationally expensive configurations (more

epochs, more hidden nodes, larger word vectors)
● Extend model to predict log level
● Study cross-project performance
● Investigate what causes a bigger gap between precision

and recall

7. References
● [1] Li, Heng, et al. “Studying Software Logging Using Topic Models.” Empirical Software Engineering, vol. 23, no. 5, Oct. 2018, pp.

2655–94. DOI.org (Crossref), doi:10.1007/s10664-018-9595-8.
● [2] Zhu, Jieming, et al. “Learning to Log: Helping Developers Make Informed Logging Decisions.” 2015 IEEE/ACM 37th IEEE

International Conference on Software Engineering, IEEE, 2015, pp. 415–25. DOI.org (Crossref), doi:10.1109/ICSE.2015.60.
● [3] Li, Zhenhao, et al. “Where Shall We Log?: Studying and Suggesting Logging Locations in Code Blocks.” Proceedings of the

35th IEEE/ACM International Conference on Automated Software Engineering, ACM, 2020, pp. 361–72. DOI.org (Crossref),
doi:10.1145/3324884.3416636.

● [4] Sabharwal, Navin and Ravi Shankar. Apache CloudStack Cloud Computing. Packt Publishing, 2103. Open WorldCat,
http://www.totalboox.com/book/id-7445847629213878005.

● [5] Danny van Bruggen, Federico Tomassetti, Roger Howell, Malte Langkabel, Nicholas Smith, Artur Bosch, … Bernhard
Haumacher. (2020, May 25). javaparser/javaparser: Release javaparser-parent-3.16.1 (Version javaparser-parent-3.16.1). Zenodo.
http://doi.org/10.5281/zenodo.3842713

http://www.totalboox.com/book/id-7445847629213878005

