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Figure 3. Showing example training (In task) and test (Out of
task) regression task with s=0.2 Noise added

Figure 4. Training losses averaged over 10 seeds per training step, showing the standard deviation as a fill. The dashed line show the
curriculum subset progression over the training with start_rate=0.1, growth _epochs=5.
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complexity differences that might exist.
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Figure 6. Post training Out of task distribution with 0.2 Noise, ECE performances averaged over the 10 runs with 95%CI. The graph
shows the improved generalizatoin capability of the model due to SPL in the noisy training splits.
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