Application of self-paced learning for noisy meta-learning

Árpád Aszalós

Responsible Professor: Matthijs Spaan Supervisor : Joery de Vries

1. Introduction

- Meta-learning, aims to create models that adapt quickly to new tasks by learning transferable representations across them, improving data-efficiency and generalization.
- Noisy data is a challenge in machine learning, addressed in traditional learning but lacking attention in meta-learning
- Self-Paced Learning (SPL) is a Curriculum Learning (CL) strategy that progresses from easier to harder examples based on model performance, and showed effectiveness in noisy data, and restricted learning resource scenarios.[1][5]
- There is a gap in research on noisy meta-learning, with most studies focusing on managing noise during testing.[3]
- Limited combining exists research on meta-learning with CL/SPL, leaving unexplored areas in their application to noisy meta-learning scenarios.

4. Experimental setup

Dataset

- 128.000 sinusoidal regression tasks (Fourier Series) (Figure 3.) $\mathcal{C} = \{(x_i, y_i)\}_{i=1}^{64}, \quad \mathcal{T} = \{(x_j, y_j)\}_{j=1}^{32}$
- 3 Clean / Noisy training data split setups
 - 0% Noisy / 100% Clean
 - 30% Noisy / 70% Clean
 - 60% Noisy / 40% Clean

Added Noise

 $\hat{y}_i = y_i + \epsilon_i \cdot s, \quad \epsilon_i \sim N(0, 1), \quad s = 0.2$

Evaluation metrics

$$ECE = -\frac{1}{N} \sum_{i=1}^{N} \log P(y_i | x_i) \quad RMSE = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2}$$

Evaluations

- Intra training evaluations
 - In-task , out of task distribution , Clean / Noisy (s=0.2) on both
- Post-training evaluations
 - In task
 - $s \in \{0.0, 0.2, 0.3, 0.4, 0.5, 0.6\}$
 - Out of task
 - higher amplitude, periodicity, number of sine components, with $s \in \{0.0, 0.2, 0.4\}$

SPL

- CurML[2] implementation adapted to JAX
- start rate of 10%; grows to full training set size over 5 epochs

2. Research question

How can Self-Paced learning aid meta-learning in presence of noisy training data?

- How does SPL affect the meta-training trajectory in noisy training environments?
- How does incorporating SPL influence the generalization performance for within training task and out ouf of training task distributions under clean and noisy test conditions, considering prior noisy training environments?

6. Limitations

- Sole focus on sinusoidal regression task restrict real-world applicability, due to the data complexity differences that might exist.
- Narrow scope of clean/noisy training splits, noise levels, and noise types, left more complex noisy environments unexplored.
- Lack of ablations in varied curriculum hyperparameter settings, to establish potential sensitivity of SPL to certain noisy environments.
- Lack of comparative analysis with other CL approaches and general techniques against noise robustness.

References

Vang, Y. Chen, and W. Zhu, "A Survey on Curriculum Learning," IEEE Trans. Pattern Anal. Mach. Intell., pp. 1–1, 2021, doi:

7. Zhou et al., "CurML: A Curriculum Machine Learning Library," in Proceedings of the 30th ACM International Conference on Multimedia, Lisboa Portugal; ACM, Oct. 2022, pp. 7359–7363, doi:

J. Galjaard, "Meta-Learning with Label Noise: A Step Towards Label Few-Shot Meta-Learning with Label Noise," Master's thesis, Delft University of Technology, 2023. [Online]. Available:

- eural Processes " arXiv Jul 04 2018 doi-T. Gong, Q. Zhao, D. Meng, and Z. Xu, "Why curriculum learning & self-paced learning work in big/noisy data: A theoretical perspective,"[5]
- , no. 1, pp. 111–127, Aug. 2015, doi:
- Y. Dubois, J. Gordon, and A. Y. Foong, "Neural Process Family." Sep. 2020. [Online]. Available http://yanndubs.github.io/Neural-Process-Family/

3. Background

Supervised Learning formulation of Meta-learning

Traditional supervised learning algorithm

 $\mathcal{D} = \{ (x_i, y_i) \}_{i=1}^N, \quad A_t : \mathcal{D} \to f(x), \quad f(x_T) = y_T$ A meta-dataset is a collection of tasks

$$\mathcal{D}_{\text{task}} = (\mathcal{D}, x_T, y_T), \quad M_t = \{\mathcal{D}_{\text{task}_i}\}_{i=1}^{N_{\text{task}}}$$

Meta-learning algorithm formalised in supervised learning context with meta-dataset (dataset of datasets).

$$A_m: M_t \to (D \to f(x; D)), \quad f(x_T; D) = y_T$$

Combines neural networks' computational efficiency SPL is formulated as weighted loss included in the and data fitting capability with Gaussian Processes' learning objective, with parameter λ that ability to produce uncertainty estimates around target determines the threshold for lower loss samples to predictions. be trained on.

5. Results and Conclusion

curriculum subset progression over the training with start_rate=0.1, growth_epochs=5.

Figure 5. Post training in task distribution ECE performances in different noisy training setups, and with increasing level of added noise, averaged over 10 runs, fill showing 95% CI.

Figure 6. Post training Out of task distribution with 0.2 Noise, ECE performances averaged over the 10 runs with 95%CI. The graph shows the improved generalizatoin capability of the model due to SPL in the noisy training splits.

Contact : Aszalos@student.tudelft.nl arpi.aszalos@gmail.com

Neural Process Model (NP)[4]

Self-Paced Learning (SPL)

$$\min_{\mathbf{w},\theta} \sum_{i=1}^{N} w_i \ell(f(\mathbf{x}_i;\theta), y_i) - \lambda \sum_{i=1}^{N} w_i$$

The SPL weights are optimised by:

$$v_i^* = \begin{cases} 1, & \text{if } \ell_i < \lambda \\ 0, & \text{otherwise} \end{cases}$$

Then, with fixed weights we perform gradient descent step on the parameters.

Conclusions

- SPL affected the meta-training by improving loss convergence and stabilising the variance of per training step losses. (Figure 4.)
- SPL showed no performance improvement in fully clean data, and improvement remained marginal between different noisy splits (Figure 5., 6.).
- Incorporation of SPL improved noise robustness for in task distribution performances with increasing noise levels. (Figure 5.)
- Incorporation of SPL improved overall out of task generalization performance on both clean and noisy data. (Figure 6.)
- Improvements in performance are mostly seen in ECE, meaning that the model's uncertainty has been decreased due to SPL
- Overall SPL, as a CL strategy, showed applicability for noisy meta-learning along the same lines as shown in traditional learning settings:
 - Improved convergence[1]
 - Improve generalization[1]