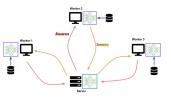
Privacy-preserving vertical federated learning: A Literature Study

Background

- ★ Defeating data silos
- ★ Empowering ownership of data
- Federated learning: distributed machine learning technique based on moving resources to where data lies instead of transfering the data
- Vertical federated learning: collaborating users' data-sets refer to the same objects but describe them in terms of distinct features
- ★ Privacy enhancing solutions: Homomorphic encryption Differential privacy



Research Questions

- What are the available technologies for vertical federated learning, and how are they implemented with respect to the performance vs. privacy trade-off?
- How do these methods compare in terms of efficiency, complexity, security and scenarios in that they would perform best?

Methodology

Multiple VFL technologies have been analysed in terms of:

- 1. Design
- 2. Computational overhead
- 3. Communication efficiency
- Model accuracy
- 5. Security model and guarantees
- Benefits and limitations
- 7. Potential improvements

Gathered information is used for comparing how these frameworks outperform each other and in which scenarios.

Study results

	Computational complexity	Convergence complexity	Communication costs	Model
FedBCD	O(TKQ)	$O(1/\sqrt{T})$	$O(\sqrt{T})$	SGD
MMVFL	$O(8Td^3/27)$	O(1/T)	O(T)	Classification
VAFL	O(TK)	O(1/T)	O(T)	SGD
Pivot	$O(Tncdbi)C_e$	$O(2/\sqrt{T})$	O(2T)	Decision Tree
FLOP	O(TK)	O(1/T)	O(T)	Classification

Table 1: Performance

1	Threat model	Privacy techniques	Improvements
FedBCD	semi-honest	HE	-
MMVFL	semi-honest	.=:	FHE, FedBCD
VAFL	malicious	Gaussian DP	FedBCD
Pivot	semi-honest; cross-update colluding participants	HE(Paillier), DP	-
FLOP	semi-honest	-	FHE, MPC

Table 2: Privacy

Conclusion

- There is no 'one-fits-all' solution
- The VFL landscape is diverse and various problems require an educated balance between performance and privacy
- VFL allows parties to safeguard their data while achieving comparable costs & results to centralized alternatives
- There is continuous room for advancement and theoretical improvements have been proposed

Future work

- Combining technical contributions of similar frameworks may result in better security guarantees and higher performance.
 This should be experimentally pursued
- Theoretical enhancements proposed by this paper should be benchmarked in practice