
Explaining detectable precedences for the disjunctive constraint
Matthias van Vliet (m.b.vanvliet@tudelft.nl) | Supervisors: Emir Demirović & Imko Marijnissen

1. Introduction

• Constraint Programming (CP): paradigm for solving 
combinatorial problems by defining the constraints a solution 
must satisfy

• Propagator: a function which filters variable domains 
according to a constraint

• Lazy clause generation (LCG): CP solving technique where 
propagations need to be explained to enable techniques such 
as backjumping

• Disjunctive: a constraint which does not allow any two tasks 
to overlap

• Detectable precedences (DP): a propagation rule for the 
disjunctive where task i must precede task j if the earliest 
completion time of j is greater than the latest starting time of i

1. Example situation to illustrate propagation using DP

Explanations for Propagations using DP in the example

• Gap: adapting DP propagation algorithm by Fahimi 
et al. [1] to support explanations in an LCG solver 
and benchmark the influence of the explanations 
on performance metrics

2. Approach

Three approaches to generating explanations 
described and implemented:
1. Naïve: Conjunction of all bounds of all starting times
2. Previously scheduled (novel intermediate): Only 

include preceding tasks in the explanation
3. Last cluster (novel advanced): Only include the set 

of contiguously scheduled tasks that ‘push’ the 
propagated task and then ‘lift’ the explanation. 

References
[1] H. Fahimi and C. Quimper. Linear-time filtering algorithms 
for the disjunctive constraint (2014)

5. Conclusion

3. Method

• Implemented DP propagation algorithm by Fahimi et 
al. [1] in the Pumpkin solver

• Implemented Naïve, Previously scheduled and Last 
cluster explanations

• Benchmarked the three approaches on 50 jobshop 
instances

4. Results
• Avg. #conflicts 43% of naïve for previously scheduled 

and 4% for last cluster
• Last cluster appears to have difficulty with large 

instances when solving is not close to optimality
• Decomposition is on average 18x faster than Last 

cluster, but struggled to prove optimality

Naïve 
(baseline)

Previously 
scheduled

Last cluster

Avg. #conflicts 45K 19K 1.8K

Avg. LBD 21.31 19.09 8.62

Avg. runtime ratio 
with baseline

1 0.822 0.773

• Previously scheduled better than baseline and last 
cluster noticeably better than baseline across all 
metrics

• Investigate Last cluster runtime difficulty with large 
instances further

• Combine Last cluster with other propagation rules to 
see whether it can compete with decomposition

3. Non-baseline approaches plotted against baseline naïve approach

2. Aggregate metrics of the three approaches

mailto:m.b.vanvliet@tudelft.nl

	Slide 4

