
System Call Sandboxing
Comparing static and dynamic analysis and filter generation

Supervisor: Alexios Voulimeneas
(A.Voulimeneas@tudelft.nl)

[1] Avi Silbershatz, Peter Baer Galvin, and Greg Gagne. 
Operating System Concepts. Tenth Edition. John Wiley & 
Sons, Inc., 2018.

[2] Claudio Canella et al. Automating Seccomp Filter 
Generation for Linux Applications. 2020. arXiv: 2012.02554 
[cs.CR].

[3] Ryan Petrich. “Linux Sandbending: Binding Program 
Behaviors without Binding Our- selves”. In: Presented at All 
Day DevOps 2023, 2023. url: https://github.com/ 
rpetrich/callander.

Introduction

Research Questions

Process

Results

Conclusion References

●System calls (syscalls) provide an interface for user-
mode programs to request the operating system’s kernel 
to execute an operation [1].

●The kernel has maximum permissions in the OS (ring 0) 
[1], so it is crucial potential malicious syscalls are 
prevented.

●Solution? Use a filter, a list marking allowed syscalls for 
each program.

●But how do we get that list?

1) How does the dynamic 
approach perform on 
programs such as ls and 
Openbox

2) How do outputs of 
different static 
approaches compare to 
an output from a 
dynamically aquired 
filter?

1) Dynamically analysing small programs
● Assembly “Hello World!” program without the C library
● Dynamically linked C “Hello World!” program using the C 

library
● The ls utility

2) Dynamically analysing a bigger program
● Openbox
● Two parts – startup and main loop

3) Statically analysing small programs
4) Statically analysing a bigger program

● For dynamic analysis:
● Construct scenarios for each program such that (ideally) 

all execution branches are covered
● Execute scenarios with strace running
● Pass trace outputs to script
● Run programs in firejail with syscall whitelist

● For static analysis:
● Run Chestnut’s Binalyzer [2] tool on each program, then 

use the list in firejail
● Run each program in Callander [3]
● Compare produced lists

1) The code was modified to stop errors

2) Generally works, but cannot launch new applications 

3) Launches, but works cannot interact with applications 
without errors 

4) Lists all files and directories but no properties

●For both relatively complex and simple programs, dynamic 
syscall analysis works well

●It detects on average around 45% fewer syscalls than 
tested static alternatives

●The larger a program is, the more difficult it is to construct 
comprehensive scenarios

●In future work, a more in-depth comparison should be 
performed featuring argument filtering and execution stage 
separation, as well as more static analysis alternatives

Statically: Read the binary and construct list of 
syscalls used by the program [2].

● Easier to execute

● May be less accurate (more detected syscalls, 
less precise arguments – especially from library 
functions)

Dynamically: Run the program, see all possible 
scenarios, construct the list from trace. 

● Slower and more difficult to set up

● Should be accurate, but may disallow valid 
syscalls if scenarios are non-comprehensive

Author: Petr Khartskhaev
(P.Khartskhaev@student.tudelft.nl)

Dynamic Analysis

●Parse the file produced by the tracing tool into separate 
syscalls with arguments

●Combine the syscalls into a dictionary with a set of all used 
arguments

●Parse the arguments into addresses, integers, strings and 
structures

●Combine the arguments within each syscall to form a list of 
possible arguments

2)

4)

3)


	Slide 1

