System Call Sandboxing
Comparing static and dynamic analysis and filter generation T U D e I ft

Author: Petr Khartskhaev Supervisor: Alexios Voulimeneas
(P.Khartskhaev@student.tudelft.nl) (A.Voulimeneas@tudelft.nl)

_ _ _ 44 179 4 177
®System calls (syscalls) provide an interface for user- ®Parse the file produced by the tracing tool into separate Tool Hello World!” (Assembly) Hello World!” (C) ls Openbox
mode programs to request the operating system'’s kernel syscalls with arguments Total 5 18 29 =0
to execute an operation [1] ® Combine the syscalls into a dictionary with a set of all used My Solution 2
| L | Works Yes Yes Yes No
®The kernel has maximum permissions in the OS (ring 0) arguments
[1], so it is crucial potential malicious syscalls are ®Parse the arguments into addresses, integers, strings and lotal 0 42 " 149
prevented. ctructures | | Extra 3 30 46 94
Callander .
®Solution? Use a filter, a list marking allowed syscalls for . s . MlSSlIlg 0 0 & 4
cach Droaram ®Combine the arguments within each syscall to form a list of 3
ProY ' possible arguments Works Yes Yes Yes No
®But how do we get that list? Total) 154 2006 IRY
Statically: Read the binary and construct list of] Extra, 0 138 234 233
syscalls used by the program [2]. Chestnut ..
Missing 0
° I t
Easier to execute Brocess Works Yes
* May be less accurate (more detected syscalls,
less precise arguments - especially from library 1) Dynamically analysing small programs 1) The code was modified to stop errors
functions) * Assembly “Hello World!” program without the C library L
. | - Dynamically linked C “Hello World!” program using the C 2) Generally works, but cannot launch new applications Failed to duplicate file descriptor for child process (Operation not
Dynamically: Run the program, see all possible library | . L permitted)
scenarios. construct the list from trace. + The /s utility 3) Launches, but works cannot interact with applications
- - - without errors ‘ Close \
o 2) Dynamically analysing a bigger program
* Slower and more difficult to set up « Openbox | | | | |
| | + Two parts - startup and main loop 4) Lists all files and directories but no properties
* Should b.e accura.te, but may disallow Vallld 3) Statically analysing small programs B AR >
syscalls if scenarios are non-comprehensive 4) Statically analysing a bigger program 4) 4727222272 2 7 2 2 o
772277222 2 7 7 ? ? binalyzer
. i T I g e B ? callander
For dynamlc analy.SIS' : ol B T R N ? callander_extraction.py
* Construct scenarios for each program such that (ideally) 977999227 7 2 2 7 7 ot s
all execution branches are covered 722772772 27 2 7 2 ? docker.trace
* Execute scenarios with strace running d?22227722 7 7 2 ? ? filter
* Pass trace outputs to script d333333333 : : : : 2 f;i”'p?
. * Run programs in firejail with syscall whitelist Close 999999992 7 7 9 9) :gitignﬂre
Research Questions | | ;| 1222222222 2 2 2 2 7 1s
* For static analysis: d?772227222 2 7 27 ? ? openbox
* Run Chestnut’s Binalyzer [2] tool on each program, then q727eeeeee 7 7 2 7 ?plan
- use the list in firejail How are you gentlemen? All your base are belong to us. (Openbox received signal 31) ;::::Z:: : : :: zpmflle"]mn
1) HOW dOeS the dynamIC * Run each program in Callander [3] How are you gentlemen? All your base are b us. (Openbox received signal 31) 999992277 7 7 2 7 . EEADHE.HD
e Combare produced lists How are you gentlemen? All your base are belong to us. (Openbox received signal 31) ~297997977 7 7 7 7 7 seccomp. json
approaCh pe rfo rm On P P Openbox-Message: Unable to find a valid menu file "/var/lib/openbox/debian-menu.xml" 4777777777 2 2 72 7 ? etatic
How are you gentlemen? ALl your base are belong to us. (Openbox received signal 31) d?77277777 2 7 1 1 7 .venv

programs such as Is and
Openbox

Conclusion References
®For both relatively complex and simple programs, dynamic [1] Avi Silbershatz, Peter Baer Galvin, and Greg Gagne.
2) HOW do OUtPUtS Of 4 ' PIE PTO9 Y Operating System Concepts. Tenth Edition. John Wiley &

syscall analysis works well

2 nternet 3
e 3
Multimedi 9
L 1a=3 : -
- = I‘I (5. I .él File I‘:an:gers 4 3 L e P o T g iovlen=1, msg controllen=8, msg flags=0}, ©) S I 2 O 1 8
ystem =
System -p —_— OnS’ nCl’ []
= @ NewTab X
Log Out

G Q Scachith Googleoren © @ ®|t detects on average around 45% fewer syscalls than 121 Claudio C la et al. Ayt Hing S Filt
. For quick access, place your bookmarks here on the bookmarks toolbar. Ma , . a u IO a n e a e a] u Oma Ing eccomp I er
approaches compare to @ o [tested static alternatives Generation for Linux Applications. 2020. arXiv: 2012.02554

®The larger a program is, the more difficult it is to construct [cs.CR].

an output from a
dynamically aquired
filter?

f

G oogl o enter comprehensive scenarios

ith

[3] Ryan Petrich. “Linux Sandbending: Binding Program
Behaviors without Binding Our- selves”. In: Presented at All
Day DevOps 2023, 2023. url: https://github.com/
rpetrich/callander.

®|n future work, a more in-depth comparison should be
performed featuring argument filtering and execution stage
separation, as well as more static analysis alternatives

	Slide 1

