'i",;u Delft A study of bugs found in the Ansible configuration management system

Matas Rastenis (m.rastenis@student.tudelft.nl)

Abstract

Research that focuses on examining software bugs is c

developing tools for preventing and for fixing software issues.

The foundational aim is to help improve the quality of the Ansible
open source configuration management system[1]

This study defines a data pipeline and custom tools to extract and
analyze 100 Ansible bugs. Common classifications are determined,
and the bugs are manually classified, revealing common patters
within the bugs.

Results: most bug prone areas are executor and connectivity
components, fuzz testing for vulnerable input configurations and
genetic algorithm testing for expanding coverage is recommended.

Research Questions

"What common patterns can be extracted from the bugs found and
what are the root causes, symptoms, triggers, system-dependence

factors, fixes, and the impact of the most frequent types of bugs in

the Ansible configuration management system.

. What are the common patterns of Ansible bugs?

. What are the main symptoms of common Ansible bugs?

. What are the main root causes of common Ansible bugs?
. What is the impact of common Ansible bugs?

. What are the triggers of common Ansible bugs?

. What is the impact of common Ansible bugs?

. Are these bugs system dependent?

59448 total issues.
28511 Bugs.

15338 Bugs with PRs.

71 Verified bugs.

735 Bugs with the 'has_pr label.
581 Documentation Bugs

2610 Unmerged PRs.

3605 Bugs with merged fixes.

Impact Severity

Low Wedum

Fixes - Conceptual

Results

Symptoms

® Unexpscted Runtime
Behavior (45%)

® tisizading Report (15%)

© Unexpscted Dependency
Behavior Error (1%)

@ Performance Issue (2%)
® Crash (37%)

Impact Consequences

® Fertormance
sgradaion (2%)

@ Logs reparting airs
a%)

© Targetconfiguration
fallad (71%)

@ Contusing user
Spsience (24%)

System Dependence

® Fixsrecuton component
%)

® Fixparser companent (12%)

© Fixconnectuiy component
(14%)

® Expang recuton eature
%) FALSE

© changesysemstucte 5305

® omer 16%)

Triggers - Reproduction
@ CLicommands (1%)

Triggers - Code
@ Logic ermors (20%)

@ Algorithmic errors (24%) @ Environment sstup (4%)
© Configuration srors (14%) © Fautydpendencyusage

@ Progiamming errors ® 0 specifc execution
(33%) (19%)

® Testease (30%)
® Specificinvocation (44%)

Root Causes
@ Eror Handiing & Reporting
%)
@ Misconfiguraton inside the
codebase (12%)
© Target machine operations
(45%)

® Contioler machine
operations (37%)

Fixes - Code

® change oncata
deciaratoniniiateaton (13%)

® At mathad %)

® Ghangs motnos (45%)

® omer(13%)

® Ghangs branen sitsmant
%)

® ke metnod (13%)

Dependent Systems

CES T SIS
o
Conclusions:

+ Most bug-prone components
are execution components and
connectivity components.

Fuzz testing recommended due
to the prevolence of specific
invocation trigger [2].

Code review process
enhancements proposed.
Recommendation to invest in
genetic algorithm test case
discovery for improving test
coverage [3].

Method

The officially recognized source for bug tracking, Github Issues,
was used to fetch all of the relevant data. In total, 100 Ansible bugs
were analyzed. Custom tooling was created to pull, filter and
serialize raw data. Then, manual analysis of the bugs produced the
classifications. The next steps are to analyze the bugs in
accordance with the research question.

The method is as follows:
1. Use Perceval to fetch raw data from Github.
2. Pre-process the data into a parsable format.
. Perform filtering and extract summary from the pre-processed
data.
. Prune unneeded data (post-filtering).
. Serialize the bugs into a MySQL database with a standardized
schema.
. Sample an amount of bugs for analysis.
. Manually analyze bugs and create common characterizations.
. Assign categories to answer all of the research questions.
. Derive insights and make recommendations.

References

. Red Hat Ansible. Ansible is Simple IT Automation. 2022. url:
https://

. Sanjeev Das et al. “A Flexible Framework for Expediting Bug Finding by
Leveraging Past (Mis-)Behavior to Discover New Bugs". In: Annual
Computer Security Applications Conference (2020). doi:
10.1145/3427228.3427269.

. Rizal Broer Bahaweres et al. “Analysis of statement branch and loop
coverage in software testing with genetic algorithm”. In: 2017 4th
International Conference on Electrical Engineering, Computer Science
and Informatics (EECSI) (2017). doi: 10.1109/eecsi.2017.8239088

ansible.com/?hsLang=

': Supervised by Thodoris Sotiropoulos (theosotr@aueb.gr).



https://www.ansible.com/?hsLang=en-us

