NEY FRAGIMENTOMIGS

FEATURES FOR GANGER
DETEGTION

b GED GED GED GED GED GED GED GED GED GED GED GED GED GED GED GED GED GED GED GED GED GED GED GED GED GED GED GED GED GED GED GED GEb GED GED GED GED GED GED GED GED GED GED GED GED GED GED GED GED GED GED GED GED GED GED GED GEbD GED GED GED GED GED @D GED GIED GED GED GED GED GED GED GED GED GED GED GED GIED GED GED GED GED GED GED GED GED GED GED GED GED GED GED GED GED GED GED GED GED GED GED GED GED GED GED GED GED GED GED GED GED GED GED GED GED GED GED GED GED GED GED GED GED GED GED GED GED GED GED GED GED GED GED GED GED GED GED GED GED GED GED GED GED GED GED GED euD e

e Cancer poses significant challenges for
patients and researchers due to its widespread
prevalence and complexity

e Studying circulating DNA fragments in the
bloodstream of individuals with cancer
emerged as a promising path in cancer
investigation - Fragmentomics

o Literature proved that fragmentomics features
offer great insights into cancer detection,
origin and treatment response [1], [2], [3]

o The logistic regression classifier thr1_hinf40000000-43000000:
outperforms the random forest
classifier in all scenarios

Chr1_hin[155000000-1600000001

e Chromosomes 1, 7 and 8 contain Chr1_bin[160000000-165000000]

the most genomic bins that
contribute the most to the
classification task of both models | w7 uin30000000-135000000
e The genomic bins from Table 1 are
pa rt of the 20 feqtu res that Chr8_hin[95000000-1000000001
contributed the most to the
classification task of both

classifiers
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Figure 2: Manhattan plot displaying the genomic

Chr8

Chr7_bin[35000000-400000001

0.6

True Positive Rate

0.2

Chr8_bin[125000000-1300000001

0.0

Table 1: Bins whose values are within the 20 most important
features in both classifiers. The numbers in the brackets
represent the start and end positions of the genomic bin

RESEARGH QUESTION

Which fragmentomics

features are most important
for cancer detection?

’ - | ogistic Regression (AUC = 0.88)
# Random Forest (AUC = 0.87)
— = (Chance

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Figure 3: ROC curve illustrating the performance
of the two classifiers when nested cross-validation
1s used for evaluation
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Figure 4: The coefficient value of the 20 features that
contributed the most to the classification task using
logistic regression. For this setting, the classifier was

in with a p-  tramed with the feature subset obtained after applying t-

test and correlation-based filtering

« Apply feature importance and
selection techniques to obtain the
most important fragmentomics
features from the available data

e Understanding the level of
importance of these features can lead
to improved diagnostic tools such as
cancer detection based on blood tests

Mann-Whitney U test
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Feature subset after
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Mann-Whitney U test>
-
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constant feature
removal

Feature subset
after variance
thresholding
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Correlation-based
feature selection
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METHODOLOGY

Initial Data Feature Extraction Feature Selection
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Features' Importance Classification

« Random Forest

» Logistic Regression
« Extract feature weights * Train/test split

» Cross-validation
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Figure 1: Pipeline describing the method used 1n this research

LIMITATIONS

e The features used during the experiments are
extracted based on a single extraction approach

e A conclusion about features’ importance can only
be derived manually by inspecting Figures 2 & 4

e These results should be validated by experts in
the medical & bio-informatics field since they are

Calculate relationship

between features and target

variables using:

obtained from a purely computer-science
perspective

e Independent t-test

| A ——

Calculate correlations between

feature pairs using Pearson

correlation coefficient (applied on
each individual feature subset)

Feature subset after
selection based on
Independent t-test

(149)
<@

e Features are extracted from the available samples

:

@Whtney Utestand P

Feature subset after
selection based on

corr. coef.
(109)

earson

Figure 5: Flowchart describing the feature selection approaches
used. The number at each hexagon’s end represents the amount
of features selected 1n each subset

] « Feature selection is applied to filter out the redundant features
lection based on Independent .. . .
t-test and Pearson cor coet. /" 1o After training the classifiers, the weights of the features are
extracted

e The features with the highest coefficient values represent the

most important fragmentomics used in cancer detection using
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