
Author

Matteo Meluzzi

M.Meluzzi@student.tudelft.nl

Supervisors

Jesper Cockxs
J.G.H.Cockx@tudelft.nl

Lucas Escot
lucas.escot@ens-lyon.fr

Is HVM asymptotically slower because of a bug? Or an error in

the Interaction Nets theory? Because of high memory usage?

There are programs which make HVM behave unexpectedly

(stack overflow, bus error, segmentation fault)

3 - Questions

For which programs is HVM

better/worse?

Is HVM truly optimal?

Does HVM use more

memory to achieve

optimality?

To what extent is HVM still

a prototype?

Are there programs which

make HVM crash and thus

undermine the safety of

Agda?

2 - HVM

Functional language

Simple syntax

Lazy

Supports lambdas

Pattern matching

Untyped

Agda does the type-

checking already

Uses Interaction Nets to

perform computations

and memory management

Never performs same

computation twice

No garbage collector

Automatic parallelization

Problem: still a prototype

Problem: run-time

overhead

1 - Motivation

Agda has the potential to

empower programmers to

write robust software

easily

Not yet used in industry

Partly because all the

Agda compilers have

some flaws

Agda compilers target

'classical' languages

Can we do better if we

target a completely

different category of

programming languages?

Chosen category: optimal

reduction machine (HVM)

4 - Analysis

CODE EXTRACTION

FROM AGDA TO HVM

Agda is a dependently typed programming language which can ensure that run-time

errors cannot happen.

It is also a proof assistant which means that it is possible to formally prove properties of

Agda code with Agda itself.

Can Agda be compiled to the HVM language? How does it perform?

5 - Findings 6 - Conclusion

HVM is not ready to be

used as a core language

for Agda

It is surprising that a

prototype can beat a

mature compiler such as

GHC

Interaction Nets might be

a breakthrough in

computational efficiency

of functional

programming languages

Further research and

tests are needed to

understand why HVM can

have worse run-time than

non-optimal languages

Figure 1: Parallelizable benchmark Figure 2: Optimal benchmark

Running time using

HVM compiler (blue)

and Haskell compiler

(orange)

The test program

computes the sum of a

binary tree with

 elements

(parallelizable)

After n=22, HVM is

faster because it uses

all the CPU cores (6 in

the benchmark)

HVM can share

computations inside

lambdas

Haskell treats them like

black-boxes

This tests program

performs function

compositions

HVM runs in linear time

whereas Haskell in

exponential time

