

Exploring methods to improve effectiveness of ad-hoc retrieval systems for long and complex queries

1. Background

Ad-hoc retrieval: ranking a list of documents from a large collection based on their relevance to a given input query (e.g. web search).

Sparse models: efficient and fast, depends on exact term-matching, cannot capture context/semantics.

Dense models: based on neural models, can capture semantics thus better results. However, much more computationally expensive.

Retrieve-and-re-rank: use a sparse retriever to retrieve an initial set of candidates, then a dense model is used to re-rank them in a second stage [1]. **Dual encoders:** use neural models to encode the query and document separately. The queries and documents are mapped to a common vector space and the similarity between them is computed [2].

Fast Forward indexes: a framework that uses dual encoders as re-rankers. Final ranking score is the <u>interpolation</u> of the 1st stage sparse score and the 2nd stage dense score [3].

2. Research Question

Can the effectiveness for long and complex queries be improved on Fast-Forward indexes?

RQ1: How does query length and complexity affect the re- ranking performance of different encoders on Fast-Forward indexes?

RQ2: What strategies can be employed to improve the effectiveness for long and complex queries on Fast Forward indexes?

4. Methodology

To evaluate the impact of long & complex queries on performance, retrieval is performed on datasets that feature a <u>wide range of average query lengths.</u>

Dataset	Avg. query word length	Task
TREC-COVID	10.60	Biomedical IR
SciFact	12.37	Fact Checking
HotpotQA	17.61	Question Answering
Arguana	192.9	Argument retrieval

Table 1: Overview of the utilised datasets

Two approaches are explored to improve effectiveness of long queries: • Query reduction using LLM's: "I read that ions can't have net dipole

- moments why not" \rightarrow "Why can't ions have net dipole moments?"
- Using **multiple dense models** for the re-ranking stage.

Dataset TREC-COVID SciFact	word length	RR@10	DCCC10				
REC-COVID	10.60		nDCG@10	MAP@1000	RR@10	nDCG@10	MAP@1000
ciFact	10.00	0.8172	0.5761	0.1835	0.9600	0.8093	0.2569
	12.37	0.6440	0.6839	0.6378	0.7070	0.7427	0.7030
IotpotQA	17.61	0.6624	0.5128	0.4344	0.8693	0.7181	0.6402
Arguana	192.68	0.2408	0.3662	0.2520	0.2511	0.3792	0.2626
0.8				0.6			Ī

5. Results

Figure 1: Query word length vs. nDCG@10 on HotpotQA.

Figure 2: Query word length vs. nDCG@10 on Arguana.

Multiple dense re-rankers

	SciFact			HotpotQA						
	α_S	α_{D1}	α_{D2}	α_{D3}	nDCG@10	α_S	α_{D1}	α_{D2}	α_{D3}	nDCG@10
One re-ranker										
Artic	0.5	0.5	-	-	0.7522	0.3	0.7	-	-	0.7255
BGE	0.3	0.7	-		0.7695	0.5	0.5	-	-	0.6957
GTE	0.5	0.5	÷	-	0.7694	0.5	0.5	-	-	0.6864
Two re-rankers										
Artic + BGE	0.0025	0.2975	0.7	-	0.7688	0.25	0.5	0.25	-	0.7340
Artic + GTE	0.0025	0.3975	0.6	-	0.7756	0.075	0.725	0.2	-	0.7310
BGE + GTE	0.0025	0.7	0.2975	-	0.7790	0.25	0.5	0.25	-	0.7122
Three re-rankers										
Artic + BGE + GTE	0.0025	0.1975	0.5	0.3	0.7765	0.05	0.55	0.3	0.1	0.7305

 Table 3: Performance comparison (nDCG@10) with varying numbers of re-rankers.

Dataset	Avg. word	BM25 >> Artic-m					
	length	$\alpha = 0$	$\alpha = 0.1$	$\alpha = 0.3$			
TREC-COVID							
Original	10.60	0.7984	0.8092	0.8074			
Original Reduced	7.48	0.7901	0.8006	0.7985			
Keyword	3.48	0.6577	0.6656	0.6688			
Narrative	24.96	0.6576	0.6672	0.6686			
Narrative Reduced	10.26	0.6910	0.6988	0.6877			
Arguana							
Original	192.9	0.3764	0.3792	0.3869			
Reduced	65.38	0.3652	0.3691	0.3751			
Table 4: Perform	mance comp d queries in T	oarison (nDCC REC-COVID a	©10) between Ind Arguana.	the reduced			

Figure 3: Comparison between the original and reduced queries in Arguana based on query length

Author: Dorian Erhan (D.Erhan@student.tudelft.nl) Supervisor: Jurek Leonhardt Responsible Professor: Avishek Anand

6. Limitations

• Limited sample of datasets - testing the methods on additional datasets would be beneficial leading to more robust results.

• The effectiveness of LLM generated reductions is influenced by the input and system prompts used. While multiple configurations were tested to optimize the results, better configurations may still exist.

7. Conclusions

Effect of query length on performance

- Retrieval effectiveness <u>decreases</u> as average query length of the dataset increases.
- However, in some datasets shorter queries are <u>more challenging</u> than longer ones due to their **ambiguous** nature.

Multiple dense re-rankers

- Effective in increasing ranking quality for long & complex queries.
 Using two models for re-ranking provides the best balance between
- performance and ranking quality.
- Optimal configuration consists of assigning greater weights to the best performing models and including the sparse score.

Query reduction

276.

- Performance <u>comparable</u> to original, but **not effective in increasing ranking quality** for long & complex queries.
- Limited success in improving performance of queries that surpass the context length of the dense model.

8. Future Work

Recommendations for future research include:

- Improving effectiveness by using multi-vector representation for queries & documents
- Applying query reduction to only a subset of corpus, based on specific criteria
- Query extension for difficult and ambiguous short queries

References

 R. F. Nogueira and K. Cho, "Passage re-ranking with BERT," CoRR, vol. abs/1901.04085, 2019. [Online]. Available: http://arxiv.org/abs/1901.04085

[2] Vladimir Karpukhin et al. "Dense Passage Retrieval for Open-Domain Question Answering". In: Proceedings of the 2020 Conference on Empircal Methods in Natural Language Processing (EMNLP) (2020), pp. 6769–6781
[3] Jurek Leonhardt et al. "Efficient Neural Ranking using Forward Indexes". In: Proceedings of the ACM Web Conference 2022. WWW '22., Virtual Event, Lyon, France, Association for Computing Machinery, 2022, pp. 266–