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Background

- Many recommender systems are well
researched for "normal" users'

+ Children and other non-normative listeners
often have traditional recommenders
perform worse®

+ Children's listening behaviour has been
studied, but no recommender has been
evaluated?®

Research Question

How well does a music recommender system
using matrix factorisation leveraging various
audio features perform for child users?
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Resources
Dataset of users' listening behaviour: LFM-2b
- filtered for children, at least 10 listens

Songs' feature values, extracted from Spotify:

- Tempo
- Musical mode

- Average Loudness
- Time signature

Experiment

+ Use 0.1% of user's listening events for training, 99.9% for
heuristics (hDCG, MRR) (hardware limitations)

* Factorisation Machine without features as control, evaluate
extension with all features and all combinations of 3 features

Featuresused || nDCG | MRR
ReSUItS Control 0.13077 | 0.31161
All features 0.15900 | 0.32225
No loudness 0.15974 | 0.37828
No mode 0.15369 | 0.35678
No tempo 0.18303 | 0.49598
No time signature || 0.17544 | 0.41342
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Control All features No loudness  No mode No tempo  No time sig.

- All recommenders with added features performed better than
the control, but fewer features tend to cause better scores

- Removing mode has little to no positive effect

- Using no tempo values significantly improves the scores

Discussion

* Quality over quantity for selecting features,
some features may oppose each other

- Very small training set due to demanding
performance of FM

- Because of the low split, comparison of the
results to similar research is not advisable

Conclusion

* Do features improve the recommender?
Yes, but...

- For better results, this experiment should
be repeated with a larger training set (80%)

- What other features can be used to improve
the recommender?

- How do features extracted through other
means (e.g. signal processing) perform?

- How good is this recommender for recom-
mending music to adults?
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