Usage of Decision-Making Information in Adaptation for Intelligent Systems

Background

User Modeling

- Many sorts of user data are used to model a user
- Such as using heart rate, blood pressure and temperature to model engagement

Intelligent Systems

- Using this model to recognize and adapt
- By predicting if someone is bored or overstimulated

Decision-Making

- Selecting the best choice out of two or more alternatives
- Also contains the identification of alternatives
- Influenced by a variety of factors

Research Question

How do intelligent systems acquire and use user data to model decision-making and reasoning, and how are these models applied for recognition and adaptation?

Methodology

Search Strategy

- User Modelling
- Human Decision-Making & Reasoning
- Intelligent Systems Recognition
 - Adaptation

Databases

Core Concept	Search Terms
User Modelling	user modeling, user profil*, user model, cognitive model*,
	affective model*, student model*, persona model*, patient
	model [*] , player model [*] , employee model [*]
Human Decision-Making	decision making, decision-making, human decision, decision
& Reasoning	support
Intelligent Systems	intelligent system, adaptive system, support system, rec-
	ommender system
Recognition	recogni*, detect*, sens*, perce*, observ*, identif*, classif*,
	monitor*, track*, analy*
Adaptation	adapt*, act, feedback, respon*, interact*, personali*, re-
	act*, updat*, modif*, adjust*, tailor*, customi*

Table 1: Core Concepts and corresponding Search Terms

Database	Scope
Scopus	Broad range of scientific papers
Web of Science	Large multi-disciplinary database
IEEE Xplore	Includes papers by the Institute of Electrical and Electronics En-
	gineers
ACM Digital Library	Publications of the Association of Computing Machinery
Table 2: Databases and descriptions	

Exclusion Criteria

- Exclude papers not written in English
- Exclude surveys and reviews
- Exclude papers that do not use user modeling
- Exclude papers that do not model decision-making
- Exclude papers that do not contain an intelligent system that recognizes and adapts

Feasibility Criteria

• Exclude papers published before 2

Screening Papers

Reports assessed ((n = 94) Reports included in th (n = 52)

- Use exclusion criteria
- From 163 papers to 94

• Screen title and abstract

Data Extraction

- Figure 1: PRISMA Flow Diagram
- Creating a table with questions
- From 94 papers to 52

Results

Data and User Modelling

- User preferences the most prominent
- User Behaviour & Characteristics also used often
- Wide range of user models used

Models

User Preference
User Behaviou
User Character
User Demograp
User Interests
User Relations
Influence
User Needs
User Emotions
User Skills
User Motivatio
User Satisfaction
User Engagem
User Perceptio

Table 3: User Models and Number of Papers

Author: Pjotr Schram Email: (P.T.Schram@student.tudelft.nl) Supervisor: Vandana Agarwal Responsible Proffesor: Bernd Dudzik Examiner: Odette Scharenborg

02′	1		
entification	of studies v	ria databases	
n: = 15) 4) (n = 64)		Records removed before screening: Duplicate records removed (n = 22)	
			,
itle and		Records excluded (n = 69)	
	, ,		,
ieval		Reports not retrieved (n = 0)	
	, ,		1
eligibility] •	Reports excluded (n = 42): Does not model decision-makin System does not aday (n = 2) Does not use user data (n = 2)	
review			

	Number	Γ
	of Papers	
es	45	
r	18	
ristics	14	
phics	6	Γ
	6	
s & Social	5	
	5	Γ
	3	Γ
	3	Γ
n	1	
on	1	
ent	1	
n	1	

Recognition & Adaptation of Intelligent Systems

- Recommender Systems predict user ratings to recommend items
- Decision Support Systems predict user ratings to advise
- Assistance Systems predicts behavioural decision-making and warns or assists

Domain of Intelligent Systems

all domains

• Prediction Accuracy

• Interface & Usability

• Privacy & Security

Data Collection

• Recommender systems are active in

• Important function in Health & Food

Challenges of Intelligent Systems

• Biases, Fairness & Explainability

Intelligent Systems	Number of Papers
Recommender Systems	44
Decision Support Systems	5
Assistance Systems	2
Social Robots	1

Table 4: Intelligent Systems and Number of Papers

Figure 2: Domain and Number of Intelligent Systems

Challenges	Number
	of Papers
Prediction Accuracy	36
Biases, Fairness & Ex-	8
plainability	
Interface and Usability	5
Privacy & Security	3
Data Collection	2

Table 5: Challenges and Number of Papers

Conclusion

- Recommender systems being most prominent explains the prominence of user preferences
- User preferences are modeled using other models
- Making decision-making easier and enabling nudging
- Decision Support Systems serve important purposes
- Assistence Systems and Social Robots, smaller but serving very important objectives

Future Work

- Include research from before 2021
- Intelligent systems that are not recommender systems