Improving Classification Accuracy in Piracy-Resistant DNN Watermarking

Author

Supervisors

Kaan Altınay k.altinay@student.tudelft.nl Dr. Zeki Erkin z.erkin@tudelft.nl

1.Background

- Deep Neural Networks (DNNs) are difficult and expensive to train. Machine Learning as a Service (MLaaS) providers' models are getting pirated [1].
- Techniques for watermarking DNNs in 2 categories: white-box and black-box verifiable [2].
- Li et al. [1] suggest a novel technique called null embedding which limits the training domain of DNN and creates a strong dependency between watermark and accuracy.
- Null embedding → classification accuracy loss of up to 1.5%.
- This paper varies the null embed pattern to achieve higher classification accuracy.

2.Research Question

How can null embedding DNN watermarking be improved to increase the accuracy of the original classification task?

3.Experimental Procedure

- CIFAR-10 and MNIST datasets were used for experimentation. CIFAR-10: 6 convolutional and 3 dense layers. MNIST: 2 convolutional and 2 dense layers.
- Models trained for 50 epochs on the CIFAR-10 dataset, and 20 epochs on the MNIST dataset per round.
- For each type of model: 5 rounds of training. Max. performance during the round used as the representative data for that round.
- In Figures 2 & 3, white squares have a large value of λ = 2000, black squares are set to - λ before normalization of the dataset.
- 10% of the dataset is null embedded and added to the main dataset before training.

Figure 2: 4x4 Original Square Watermark on 12x12 Image

Figure 3: 16 pixels watermarked in 12x12 images. a) Random WM, b) Peripheral WM, c) Circular WM, d) Triangular WM

neural networks with watermarking. pages 159-171, 2018.

References:

Figure 1: Visualising Null Embedding. Source: [1]

4.Results

Only CIFAR-10 results are included in Table 1 as they were the more telling results from the two datasets used.

MNIST resulted in very high accuracies in a short period. Quickly converging accuracies made it difficult to distinguish the performances of the different models.

Table 1: Training, Validation, and WM Verification Accuracies for models trained with the CIFAR-10 dataset

demonstrates the quick convergence of accuracy to around 99.4% for MNIST.

Graph 2 shows asymptotic behaviour around 82.5% for CIFAR-10.

5.Conclusions

For CIFAR-10:

Best in Validation Set Accuracy: Circular WM Best in Watermark Verification: Peripheral WM For Both Datasets:

Best overall compromise between two values: Triangular WM

The results show that using a Triangular Watermark to null embed a model is the most effective to preserve the normal classification accuracy of the DNN while also maintaining reliable verifiability. Data from both datasets indicate the Circular Watermark is a close second. Both perform marginally better (~0.5% improvement in Validation Set Accuracy) than the original Square Watermark.

6.Future Work

- Checking if the newly proposed null embedding techniques are as robust as the one initially proposed by Li et al against transfer learning, fine-tuning, and model compression.
- Trying methods on larger datasets, and on datasets of other matrix-like data formats.
- Aim to reduce the 10% overhead in training time introduced by the 10% larger training set.

1. Huiying Li, Emily Wenger, Shawn Shan, Ben Y. Zhao, and Haitao Zheng. Piracy Resistant Watermarks for Deep Neural Networks, December 2020. arXiv:1910.01226 [cs, stat]. 2.. Zhang, Z. Gu, J. Jang, H. Wu, M.Ph. Stoecklin, H. Huang, and I. Molloy. Protecting intellectual property of deep

Devris İsler d.isler@imdea.org

Graph 1: Accuracy Convergence for MNIST

Graph 2: Accuracy Convergence for CIFAR-10

Delft