
How well do clustering similarities-based concept drift detectors identify concept 
drift in case of synthetic/real-world data?
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Why this research
 Concept drift (Fig. 1, 2): relevant 

streaming data problem - examples: 
fraud detection [1], user modelling [2

 Drift detectors: algorithms detecting 
concept drif

 --> help prevent drop in accuracy of 
deployed classifier

 Supervised drift detectors require 
data labels --> expensive

 Few available unsupervised drift 
detectors --> these only compare 
original data to incoming data --> 
labels not necessar

 Drift detectors seldom evaluated on 
real-world datasets

Contributions
 Two existing unsupervised drift 

detectors now publicly available
 --> reduced limitations in existing 

drift detection comparison research 
[3] caused by unavailable 
implementation

 Evaluation results on both synthetic 
and real-world data

Figure 1: Concept drift = change in 
underlying distribution of streaming data 
over time. Adapted from (D. Geyshis, 2021)

Figure 2: Concept drift leads to drop in 
classifier accuracy.

UCDD [4]: k-means 
clustering for class 
estimates (Fig. 3), drift 
detected when classes 
shift away from one 
another



MSSW [5]: drift detected 
when average total 
distance to centroids in 
weighted k-means 
clustering exceeds a 
threshold (Fig. 4)

Table 1: Results in synthetic datasets for different algorithms, datasets, and 
drift widths. The table is color coded to highlight important trends, such as a 
worsening performance for width >= 10.0.

Table 2: Results in real-world 
datasets for different 
algorithms, datasets and 
experiments/batch sizes. The 
table is color coded to show the 
suboptimal performances of the 
algorithms in real-world 
datasets

Table 3: Color coding 
for the metrics. Cells 
are filled by the worse 
color in each pair.

 UCDD: very dependent on additional parameters, k-means clustering too simple for label 
estimates--> detections not guaranteed for more complex dataset

 MSSW: good results in synthetic datasets --> LTC capped at 25% for small enough width
 UCDD and MSSW resilient to drift widths of at most the batch siz
 UCDD and MSSW depend on categorical feature handlin
 Real-world data: either too little detections (ACC<=65%) or too many detections (FPR>55%
 --> UCDD and MSSW likely not suitable for the real worl
 --> further research: try other clustering methods in UCDD, try other drift definition 

strategies to thoroughly confirm that these detectors are not suitable for the real world

Data setup: shown in and explained by Fig. 5, 6

Datasets
 Synthetic
 --> abrupt and gradual drift (Fig. 7), drift starts at a 

known batc
 Real-world
 --> drift unknown, estimated for individual batches 

through base classifier accuracy

Evaluation metrics
 Synthetic data: false-positive rate (FPRS) = fraction of 

false alarms, latency (LTC) = how late drift was 
detecte

 Real-world data: false-positive rate (FPRR) = fraction 
of false alarms, detection accuracy (ACC) = fraction 
of batches where drift was correctly detected


Adaptation: categorical feature handling by excluding 
them or encoding through one-hot and target encoding

Figure 5: Data setup for evaluation: dataset split to reference and 
testing data and then to equal-sized batches, of which some are 
drifting (grey). Adapted from (L. Poenaru-Olaru et al., 2022)

Figure 6: High-level drift detection explanation. Drift detector goal: 
detect all drifting (grey) batches. 
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Figure 7: 
Gradual vs 
abrupt drift, 
(L. Poenaru-
Olaru et al., 
2022)
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* UCDD is dependent on 
additional parameters, so the 
results presented here might be 
biased

Figure 3: Intuition of 
unbiased label 
estimates through 
clustering in UCDD

Figure 4: example 
suddenly too high 
average distances 
to centroids in 
MSSW
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