
5. Conclusion & Limitations
• No relevant influence was found of the generative 

capability on the explainability of a joint-energy model.

• The use of JEM training produced both more explainable 
models and less explainable models than classical 
training.

• Various experimental paths are still open:
1. Comparing JEMs varying the importance of the 

generative training objective in training.

2. Work to counterbalance the training instability of 
JEMs to more clearly compare them and classically 
trained models.
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1. Introduction
• Counterfactual Explanations (CE)[1]: given an input 

classified by a model in an undesired class, find how that 
input should change to instead be classified in the target 
class. A good CE is:
• Plausible: the proposed change makes the new input 

indistinguishable from the real-world examples of the 
target class.

• Faithful: the proposed change is representative of what the 
model has learned from its training.

• Explainable Model: a model whose faithful CEs are also 
plausible.

• Energy-Constraint Conformal Counterfactual (ECCCo)[1]: a 
technique to generate CE with a specific focus on 
faithfulness.

• Joint Energy-based Models (JEM)[2]: an alternative way of 
training certain classifier architectures to behave both as 
classifiers (high accuracy) and generative (low generative 
loss) models.

• Implausibility: metric to evaluate CEs. A model whose 
ECCCo-generated CEs have low implausibility is considered 
explainable.

Counterfactuals generated from a joint energy model 

.

3. Methodology
Intra-model Experiment: train multiple JEMs and evaluate 
generative loss and implausibility correlation.

Training-based Experiment: train the same architecture 
classically and as JEM and compare implausibility.
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4. Results
Intra-model Experiment: correlation between generative loss and 
implausibility. 1 would indicate perfect linearity between generative 
capabilities and explainability of a model. Computed on multiple datasets and 
neural network architectures.

Training-based Experiment: comparison between classical model implausibility and JEM implausibility. * markings indicate 
significant improvement in explainability using JEM, † markings indicate significant loss of explainability.

2. Research Questions
1. When training a JEM, does its generative loss affect its 

explainability?

2. Given the same architecture, does the JEM training 
improve explainability of the model vs. classical training?
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