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6. Conclusion

Markov chains are models which describe the probability of a 
certain state transition based only on the current state.

Adjacency matrices can be compressed by:
• Merging states which correspond to equivalent rows [5].
• Merging states which correspond to equivalent columns [5].
• Merging states with a transition probability of 1.

Figure 2. Simple state machine with 
probabilities indicated per edge.

Figure 3. The corresponding adjacency 
matrix of the state machine in Figure 2.

Obtaining a model of system behaviour has several advantages:
• Test case generation [1]. 
• Analysis of software processes [2].
• Improve software quality [3]. 

Existing techniques do not scale well, as the problem of inferring a 
minimalistic finite state machine is NP-Hard [4].

The aim of this research is to evaluate the effectiveness of using 
Markov chains for inferring a concise yet accurate state model of 
system behaviour using log analysis.

5. Results

Log statements correspond to an event type.

Log traces (sequences of log statements) are 
represented in a graph where all nodes 
correspond to one or more event types.

• Contains at most one node for every 
event type.

• Grows with the number of unique event 
types.

• All log traces start in the same state.
• All log traces end in the same state.
• Every edge has an empirically determined 

probability for that event to occur, given 
that the next event type is unknown.

An empirical study was performed on the logs of the XRP Ledger 
Consensus Protocol.

The model’s accuracy was measured using the following metrics:
Specificity, Recall, Precision, and F-measure.
Results were collected by compressing the model to a one-node 
model, while measuring the metrics on intermediate results.

A run-time experiment was conducted in which a model was 
trained and compressed for five different dataset sizes.

           

      

         

         

   

   

   

   

   

   

   

   

   

   

   

                      

               

 
 
  
 

  

   

   

   

   

   

   

                               

               

 
  

 
  
 
 

Figure 1. Simple unique 
state graph.

Figure 4. Results of the accuracy experiment.

• Scales linearly in run-time.
• All metrics score high for compression rates lower than 50%.
• Several clear knee points.
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Figure 5. Results of the run-time experiment.

• All metrics score high 
before the compression
rate of 52%.

• Recall scores high.
• Specificity scores 0 at 

100% compression.
• There is a trade-off: 

accuracy is sacrificed for
conciseness.

• Consistent results.
• Run-time scales linearly

with the size of the
dataset.


