
1. Problem 3. Markov chains

2. Unique state graph

4. Empirical study

6. Conclusion

Markov chains are models which describe the probability of a
certain state transition based only on the current state.

Adjacency matrices can be compressed by:
• Merging states which correspond to equivalent rows [5].
• Merging states which correspond to equivalent columns [5].
• Merging states with a transition probability of 1.

Figure 2. Simple state machine with
probabilities indicated per edge.

Figure 3. The corresponding adjacency
matrix of the state machine in Figure 2.

Obtaining a model of system behaviour has several advantages:
• Test case generation [1].
• Analysis of software processes [2].
• Improve software quality [3].

Existing techniques do not scale well, as the problem of inferring a
minimalistic finite state machine is NP-Hard [4].

The aim of this research is to evaluate the effectiveness of using
Markov chains for inferring a concise yet accurate state model of
system behaviour using log analysis.

5. Results

Log statements correspond to an event type.

Log traces (sequences of log statements) are
represented in a graph where all nodes
correspond to one or more event types.

• Contains at most one node for every
event type.

• Grows with the number of unique event
types.

• All log traces start in the same state.
• All log traces end in the same state.
• Every edge has an empirically determined

probability for that event to occur, given
that the next event type is unknown.

An empirical study was performed on the logs of the XRP Ledger
Consensus Protocol.

The model’s accuracy was measured using the following metrics:
Specificity, Recall, Precision, and F-measure.
Results were collected by compressing the model to a one-node
model, while measuring the metrics on intermediate results.

A run-time experiment was conducted in which a model was
trained and compressed for five different dataset sizes.

Figure 1. Simple unique
state graph.

Figure 4. Results of the accuracy experiment.

• Scales linearly in run-time.
• All metrics score high for compression rates lower than 50%.
• Several clear knee points.

[1] G. Fraser and N. Walkinshaw. 2012. Behaviourally adequate software testing. In 2012 IEEE Fifth International Conference on Software Testing, Verification and Validation. IEEE, 300–309.
[2] R.M. Greenwood. 1992. Using CSP and system dynamics as process engineering tools. In European Workshop on Software Process Technology. Springer, 138–145.
[3] F. Wagner. 2006. Modeling software with finite state machines: a practical approach. auerbach Publications
[4] A. W. Biermann and J. A. Feldman. 1972. On the Synthesis of Finite-State Machines from Samples of Their Behavior. IEEE Trans. Comput. C-21, 6 (1972), 592–597. https://doi.org/10.1109/tc.1972.5009015
[5] W. M. Spears. 1998. A Compression Algorithm for Probability Transition Matrices. SIAM J. Matrix Anal. Appl. 20, 1 (1998), 60–77. https://doi.org/10.1137/s0895479897316916

Figure 5. Results of the run-time experiment.

• All metrics score high
before the compression
rate of 52%.

• Recall scores high.
• Specificity scores 0 at

100% compression.
• There is a trade-off:

accuracy is sacrificed for
conciseness.

• Consistent results.
• Run-time scales linearly

with the size of the
dataset.

