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Measuring the Performance of Multi-Objective 

Reinforcement Learning algorithms - Nile River Case Study

1. Introduction

• Simulations of real-world multi-objective problems are developed in water management.
• These simulations are not compatible with Gymnasium and don’t allow in any other way for simple change of optimization

algorithm. Thus, (Reinforcement Learning) RL algorithms cannot easily be used for these problems.
• Connecting two disciplines can have following benefits: potentially better solutions to the water management problems

and a chance for benchmarking RL algorithms on real-world problems.
• In this research, we want to bridge the gap between those two disciplines by rewriting the simulation to make it

compatible with Gymnasium and benchmarking multi-objective RL algorithm (MONES [2]) with water management
algorithm (EMODPS [4]).

2. Simulation

6. Results – performance 

metrics

MONES produces feasible results for all objectives except the hydropower
production. However, its results are in very small range for Egypt deficit, Sudan
deficit and Ethiopia hydropower. The variability and more significant trade-offs can
only be seen for the Egypt low HAD level objective. Low solution diversity can be
seen even better when compared with EMODPS policies like Best Ethiopia
Hydropower. A potential reason for that can be too low MONES exploration.

3. Methods – performance 

metrics
Min-max normalisation – normalisation is applied to the objectives to scale them to the 0, 1 range. This makes each
objective contribute to the indicator in the comparable manner.
Hypervolume – a multi-dimensional volume spanned by the non-dominated points of a solution set with respect to the
reference point [3].
Additive epsilon-indicator – a smallest factor by which the objective values for the Pareto front must be decreased such that
each point in the Pareto front is weakly dominated by at least one solution from the solution set. The formula follows:

𝐼ε+ = inf
ε∈𝑅

{ ∀𝑉π ∈ 𝑃𝐹, ∃𝑉π′ ∈ 𝑆: 𝑉𝑖
π ≤ 𝑉𝑖

π′ + ε, ∀𝑖 ∈ {1, … , 𝑛}},

where Vπ is a value of policy π, PF is the Pareto front, and S is the compared solution set.

Inverted Generational Distance Plus – an average modified distance from each point of the Pareto front to the closest point 

in solution set S [3]. It is given by the following formula:
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where PF is the Pareto front, 𝑑𝑖
+ = max 0, 𝑎𝑖 − 𝑧𝑖 and S is the compared solution set.
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7. Conclusions

• Implemented Nile River simulation compatible with the Gymnasium
framework.

• Benchmarked MONES against EMODPS in the Nile River case study.

Contributions

Limitations

• Data used in this simulation comes from [1]. However, we cannot be sure of its
correctness as it is a 20 years prediction, which can vary depending on many
factors. Since data influences training, as well as outcomes this produces an
uncertainty.

• The number of iterations is limited due to constrained computational resources,
maybe much longer training time could achieve different results.

Future work

• Implement EMODPS compatible with the Gymnasium framework. Measure its
performance on different RL benchmarks.

• EMODPS performs better than MONES in the Nile River simulation. Its results
are more diverse and dominate most of the solutions found by MONES.

• MONES produces feasible solutions on three out of four objectives.
• MONES lacks some exploration to find more diverse policies and optimise the

hydropower production.

Findings

Hypervolume progress is used
for training a MONES agent.
Each training run takes
around 10 hours using 32
CPUs. Hyperparameters are as
follows:
• N iterations: 270
• Population size: 128
• N runs per individual: 1
• Indicator: Hypervolume

The simulation, adapted from [1], consists of four reservouirs
(dams) that decide how much water they release at each
timestep. The water releases have downstream impact on
irrigation, power production and stored water in the next
timestep. This influences objectives of the involved countries.

Developed simulation framework is Gymnasium compatible. It
means that an agent can communicate with environment by
providing actions and receiving observations and rewards. This
standard API allows for simple changes of optimisation
algorithm.

Image source: [1]

An agent is trained with three different random seeds and the hypervolume
progress is plotted above. Each run has around 35 000 number of function
evaluations (NFEs), which is comparable to 50 000 NFEs used for the EMODPS
training [1].

The results of the run with highest hypervolume (seed 1410) are analysed. Below
the objectives for different MONES policies and some chosen EMODPS policies
from [1] are plotted.

5. Results – found policies

4. MONES agent training

The comparison of performance metrics between MONES and EMODPS can be
seen in the table below, where the arrow indicates whether larger or smaller
outcome is more desirable.

EMODPS outperforms MONES significantly in every metric. However, the metrics
are highly influenced by the poor performance of MONES in generating
hydropower, despite its ability to find feasible solutions in the other objectives.

When creating non-dominated solution set from both algorithms it consists of 222
points from EMODPS and 1 point from MONES. Thus, EMODPS almost dominates
the MONES solution set.

For MONES the number of non-dominated points in the solution set rises with
higher hypervolumes. Seeds 2137, 42 and 1410 achieved 11, 14 and 18 non-
dominated points, respectively. This order of seeds corresponds to the increasing
order of hypervolume in the final solution set.
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