
G.A.Cicimen@student.tudelft.nl

References
[1] Benmahdjoub M., van Walsum T., van Twisk P., Wolvius EB. Augmented reality incraniomaxillofacial   surgery :   added   value   and   
proposed   recommendations   through   asystematic review of the literature.  Int   J   Oral   Maxillofac   Surg  2020;(November). Doi:10.1016/
j.ijom.2020.11.015.

[2] F. Incekara, M. Smits, C. Dirven, and A. Vincent, “Clin� ical feasibility of a wearable mixed-reality device inneurosurgery,” World 
neurosurgery, vol. 118, pp. e422–e427, 2018.

[3] X. Chen, L. Xu, Y. Wang, H. Wang, F. Wang, X. Zeng,Q. Wang, and J. Egger, “Development of a surgicalnavigation system based on 
augmented reality using anoptical see-through head-mounted display,” Journal of Biomedical Informatics, vol. 55, pp. 124–131, 2015.

[4] Yew, Z. J., & Lee, G. H. (2020). Rpm-net: Robust point matching using learned features. In Proceedings of the IEEE/CVF conference on 
computer vision and pattern recognition (pp. 11824-11833).

[5] Huang, S., Gojcic, Z., Usvyatsov, M., Wieser, A., & Schindler, K. (2021). Predator: Registration of 3d point clouds with low overlap. In 
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 4267-4276).

[6] M. Weyns, “Improving patient alignment by leveragingpoint-cloud surface registration techniques,” 2022.

5. Conclusion
 RPMNet demonstrates  on 
 PREDATOR demonstrates  match accuracy on 
 RPMNet is able to perform  on navigator data, and provides 

comparable results to algorithmic approaches
 Both models demonstrate quick evaluation times of  for PREDATOR and 

 for RPMNet
 DL models can improve patient-alignment registration if 

 to Pre-Op data, or if the DL model is 

consistent and semi-accurate matches Pre-Op Data
inconsistent but precise Pre-Op Data
general alignment

1.06 seconds
1.87 seconds

sampled points are of similar 
density configured to register uneven densities.

4. Results

Figure 5: PREDATOR Evaluation Results for 
HoloNav Pre-Op data

Figure 4: RPMNet Evaluation Results 
for HoloNav Pre-Op with Navigator Data

Figure 7: Comparison of RPMNet accuracy to 
an algorithmic approach

Figure 6: Visualiser Output for 
Model 3, Navigator Data 2
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Figure 2: Visualisation of an 
accurate match acquired with 
fuducial points.

Figure 3: Visualisation of a Point Cloud data from the 
ModelNet40 dataset, acquired from ply_data_test.h5, 
index 1.

Figure 1: The evaluation metrics 
utilised for RPMNet and PREDATOR.
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