Utilising Deep Learning Models for the Surface Registration Problem in HoloNav

Author: G. Alp Cicimen - Responsible Professor: Ricardo Guerra Marroquim - Supervisor: Abdullah Thabit

1. Background

- Conventional surgical navigation systems come with challenges such as the data being presented on a display
- The surgeon therefore has to continuously switch focus between the surgical site and the screen.
- By utilising **AR systems** such as **HoloLens 2** hand-eye coordination of the surgeon could be improved. [1]
- For HoloNav to function, it needs to be able to register virtual data on the real world
- Existing work in AR systems for surgical navigation utilise manual registration [2] or landmark-based registration [3]
- Landmark-based registration may not be possible due to the difficulties in marking **fiducial points** on a patient
- Surface based registration techniques may be used instead of landmarks, by utilising an algorithmic approach, or Deep Learning models.

2. Research Question

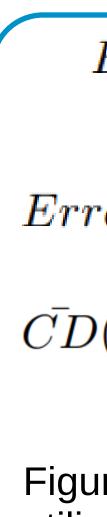
Can Deep-Learning methods improve the patient-alignment registration for the HoloLens?

- 1. What kind of Deep Learning methods could be trained for usage in patient-alignment registration?
- 2. How would Deep Learning models be suitable for patientalignment registration in terms of alignment accuracy on a test set?
- *3.* How would Deep Learning models be suitable for patientalignment registration in terms of time for evaluation? 4. Why would Deep-Learning based approaches be used
- for patient-alignment registration as opposed to using traditional algorithmic-based approaches?

G.A.Cicimen@student.tudelft.nl

3. Method

- Acquire and configure Deep Learning models for Point Cloud Registration in HoloNav
 - RPMNet [4]
 - Overlap PREDATOR [5]
- Train and evaluate acquired DL models on various types of data:
 - Train on ModelNet40, test on ModelNet40
 - Train on ModelNet40, test on HoloNav Pre-Operative Model
 - Train and test on **Pre-Operative Model** and **Navigator Data**
- Evaluate alignment accuracy and evaluation duration on test dataset (Figure 1)
 - Isotropic translational error
 - Isotropic rotational error
 - Chamfer Distance Error
- Compare evaluation results with an algorithmic approach
 - Evaluate HoloNav Pre-Operative **Model** from method outlined by Weyns[6]



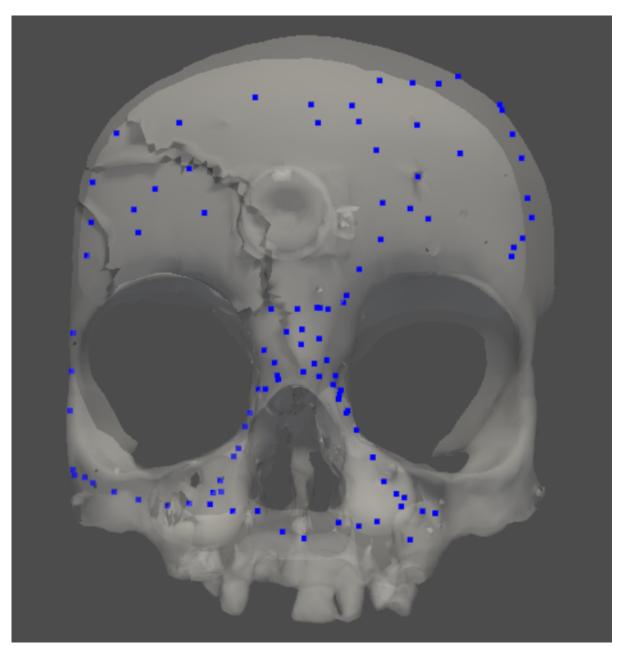


Figure 2: Visualisation of an accurate match acquired with fuducial points.

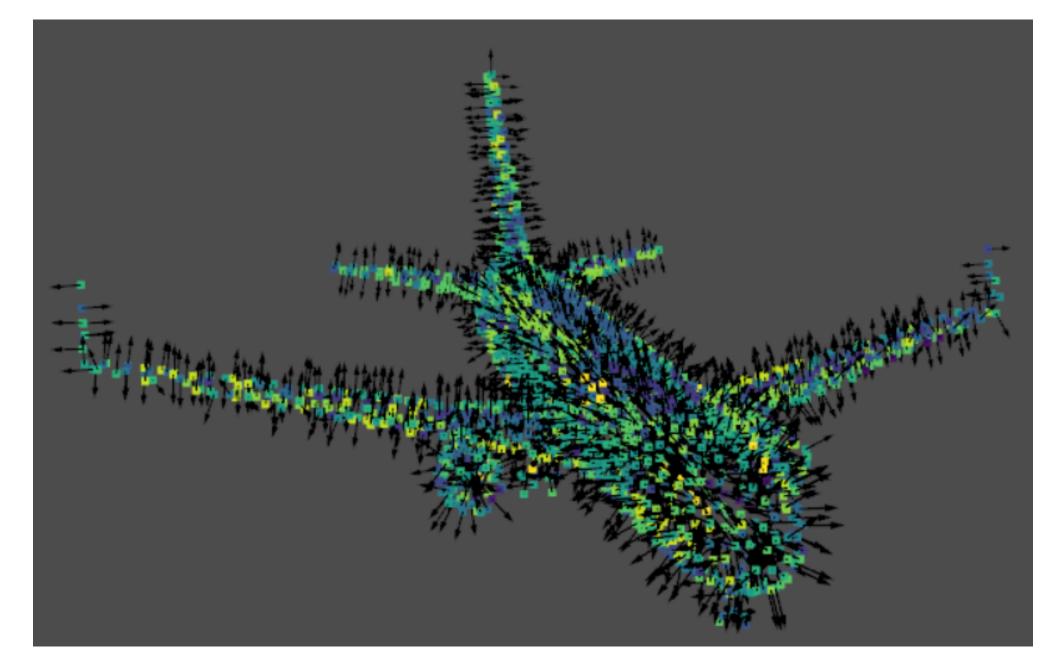


Figure 3: Visualisation of a Point Cloud data from the ModelNet40 dataset, acquired from ply_data_test.h5, index 1

$$Error(Rot) = \angle R_{pred} R_{init}$$

$$or(Trans) = ||T_{pred} + T_{init}||_2$$

$$(\mathbf{X}, \mathbf{Y}) = \frac{1}{|\mathbf{Y}|} \sum_{\mathbf{y} \in \mathbf{Y}} \min_{\mathbf{x} \in \mathbf{X}} ||\mathbf{x} - \mathbf{y}||^2$$

Figure 1: The evaluation metrics utilised for RPMNet and PREDATOR.

		Isotropic	Isotropic	Modified
Pre-Op Model	Navigator	Rotation	Translation	Chamfer
		Error	Error	Distance
1	1	9.450	231.4	38.30
1	2	19.63	459.6	44.74
1	3	3.956	108.1	41.30
1	4	16.09	377.5	64.10
1	5	4.690	65.81	49.56
2	1	23.01	657.6	48.22
2	2	4.994	84.01	46.52
2	3	13.89	397.0	52.65
3	1	14.77	480.7	35.16
3	2	11.90	333.2	13.32
3	3	3.566	112.5	20.15

Figure 4: RPMNet Evaluation Results for HoloNav Pre-Op with Navigator Data

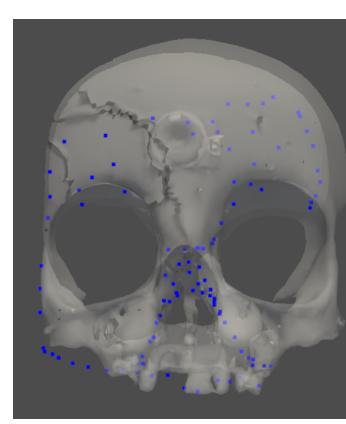


Figure 6: Visualiser Output for Model 3, Navigator Data 2

- **1.87 seconds** for RPMNet.

[1] Benmahdjoub M., van Walsum T., van Twisk P., Wolvius EB. Augmented reality incraniomaxillofacial surgery : added value and proposed recommendations through asystematic review of the literature. Int J Oral Maxillofac Surg 2020; (November). Doi:10.1016/ .ijom.2020.11.015.

neurosurgery, vol. 118, pp. e422- e427, 2018. computer vision and pattern recognition (pp. 11824-11833).

4. Results

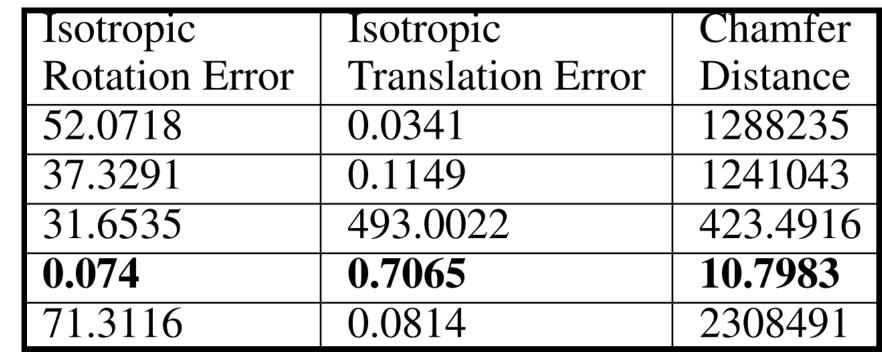


Figure 5: PREDATOR Evaluation Results for HoloNav Pre-Op data

Voxel Size	RPMNet	FPFH	FPFH
VOXEL SIZE	CD	Only	(With ICP)
4	4.75	519.7783	382.8319
5	16.0	150.9141	1.00298
6	10.6	186.9544	1.83306
7	11.2	1.09607	1.23063
8	7.37	7845.365	7887.997
9	6.79	109.4227	1.09453
10	47.6	2071.387	2109.046

Figure 7: Comparison of RPMNet accuracy to an algorithmic approach

5. Conclusion

• RPMNet demonstrates consistent and semi-accurate matches on Pre-Op Data. PREDATOR demonstrates inconsistent but precise match accuracy on Pre-Op Data. • RPMNet is able to perform **general alignment** on navigator data, and provides

comparable results to algorithmic approaches.

• Both models demonstrate quick evaluation times of **1.06** seconds for PREDATOR and

• DL models can improve patient-alignment registration if sampled points are of similar density to Pre-Op data, or if the DL model is configured to register uneven densities.

References

[2] F. Incekara, M. Smits, C. Dirven, and A. Vincent, "Clin ical feasibility of a wearable mixed-reality device in neurosurgery," World

[3] X. Chen, L. Xu, Y. Wang, H. Wang, F. Wang, X. Zeng, Q. Wang, and J. Egger, "Development of a surgical navigation system based on augmented reality using an optical see-through head-mounted display," Journal of Biomedical Informatics, vol. 55, pp. 124–131, 2015. [4] Yew, Z. J., & Lee, G. H. (2020). Rpm-net: Robust point matching using learned features. In Proceedings of the IEEE/CVF conference on

[5] Huang, S., Gojcic, Z., Usvyatsov, M., Wieser, A., & Schindler, K. (2021). Predator: Registration of 3d point clouds with low overlap. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 4267-4276). [6] M. Weyns, "Improving patient alignment by leveraging point-cloud surface registration techniques," 2022.

TUDelft