
• Specialized protocols can outperform generic ones for certain tasks, 
but are less flexible to extend and adapt.
• Real-world applications usually use either asymmetric 
(client-server) or specialized protocols.
• A semi-honest adversarial model is weaker, but more efficient than a 
malicious one.
• Semi-honest protocols can be converted into malicious-secure by 
cut-and-choose or zero-knowledge proofs, but this results in costs.
• Some protocols can be optimized by techniques such as free XOR 
and garbled row reduction.
• Comparisons of protocols and techniques are shown in Tables 1 and 
2.
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In Multiparty Computation (MPC), parties want to 
compute a function using their inputs, while preserving 
these input private to other parties.  MPC protocols aim 
to achieve this, and can be classified in different 
categories.

• Generic protocols can compute any function; 
Specialized protocols can only compute some functions
• Protocols have different adversarial models. A 
semi-honest adversary tries to read more information, 
but follows the protocol. A malicious adversary does not 
follow the protocol and tries to change the computation.

How do secure Multi-Party Computation protocols 
compare with each other and with other techniques for 
computation with encrypted data? 

• How much do specialized protocols over perform 
generic ones and in which cases?
• What is the impact of the adversarial model on 
efficiency and security?
• How to convert semi-honest protocols to 
malicious-secure ones?
• What are possible optimizations to the protocol?
• How does MPC compare to other techniques for 
computing on encrypted data: fully homomorphic 
encryption (FHE), oblivious RAM (ORAM), structured 
encryption (StE), and trusted execution environments 
(TEEs)?
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• Main idea: convert function to a Boolean or arithmetic circuit
• Then, either garble (encrypt) the wire values…

 

or secretly share them among parties A and B.

• The first approach is done by Yao’s GC [5] and BMR [6]. The second approach is 
done by GMW [7] and BGW [8].
• BMR can be seen as an extension of Yao’s GC for multiple parties.

• The protocols are semi-honest secure by default. However, techniques such as 
cut-and-choose and zero-knowledge proofs (e.g. GMW compiler) can make them 
malicious-secure, but with some costs.
• Some protocols can be optimized using point-and-permute, free XOR, garbled 
row reduction, pre-processing phase with multiplication triples, etc. 

• Private Set Intersection (PSI),: two parties want to compute 
the intersection of their private values without revealing 
values that are not in the intersection. 
• A specialized PSI protocol can be implemented using oblivious pseudorandom 
functions (OPRF) [9] and performs better than circuit-based (i.e. generic) 
protocols, though the former cannot be easily adapted and is only semi-honest 
secure.

5. Protocols

7. Conclusions
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• A literature survey was conducted on the field of MPC
• 56  papers were used in the survey.
• Snowball sampling: from two works that gave an overview of MPC, 
collected references on relevant topics. For each paper, read the 
relevant sections taking notes. Then, found references to broaden or 
deepen on the topics. Repeated this process for each paper. 
• Used Scopus to find more up-to-date literature on state-of-the-art 
solutions.
• Papers on other techniques were provided by peers.

3. Methodology

2. Research Question

Table 2: Comparison of techniques for computing on encrypted data. Overhead for MPC refers to round complexity

Threat model Leakage Overhead Usage Computation Parties
FHE IND-CCA2 Nothing Polynomial Little Any Client(s)-server
MPC SH / Mal. Nothing Const. / Lin. Medium Any Any two or more
ORAM Semi-honest Side-channel attacks Logarithmic Medium Any data access Client(s)-server
StE Semi-honest Access patterns Sublinear Medium Specific data access Client(s)-server
TEEs Malicious Access patterns Constant Large Any Client-server + attestation dev.

Table 1: Comparison of MPC protocols. Checks indicate affirmative, crosses indicate negative, and minus signs indicate that malicious security is not present by default, but can be added. The 
headings are number of parties, maliciously secure, dishonest majority, information-theoretical security, round complexity, circuit type, practical usage, generic or specialized.

Parties Mal. secure Dis. maj. IT. sec Round cplx. Circuit type Usage Generic Specialized
Yao’s GC [5] 2 ➖ ✅ ❌ Constant Boolean Large ✅ ❌
GMW [7] 2 or more ➖ ❌ ❌ Linear Bool./arith. Medium ✅ ❌
BGW [8] 2 or more ➖ ❌ ✅ Linear Arithmetic Medium ✅ ❌
CCD [10] 2 or more ➖ ❌ ✅ Linear Arithmetic Little ✅ ❌
BMR [6] 2 or more ➖ ✅ ❌ Constant Boolean Medium ✅ ❌
PSI [9] 2 ❌ ✅ ❌ Constant N/A Medium ❌ ✅
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• Used to investigate wage inequality without revealing 
sensitive information (2018) [3].
• Private Set Intersection Sum with Cardinality developed 
by Google researchers to calculate ad conversion rate 
(2020) [4].

4. Real world applications

• FHE: the encryption of the result of a function on inputs is equal to 
the function applied to ciphertexts of the inputs, for any function.  
FHE can be used for MPC, and it is very efficient communication-wise, 
but very expensive computation-wise. In practice, other forms of 
homomorphic encryption are preferred.
• ORAM: a client using an untrusted server for storage can hide 
access patterns on the data. The context is more restricted, being only 
client-server. In this specific context, ORAM can achieve sublinear 
complexity, whereas MPC is always at least linear.
•StE: a client stores structured encrypted data on a database in such 
a way that it can still be queried. The context is similar to ORAM, 
more restricted compared to MPC. StE aims at practical efficiency and 
as such is not as secure as MPC and ORAM (for example, some 
information leakage is allowed).
•TEEs: a client can securely outsource computation on an untrusted 
server. The confidential computation relies on a trusted computing 
base and trusted hardware vendor. The context is again more 
restricted than MPC; it achieves higher efficiency than MPC, but with 
different security assumptions, involving trust in other entities.

6. Other Techniques


